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Abstract 

This study investigates the application of machine learning algorithms for predicting tool wear in machining 

operations, aiming to enhance production efficiency and reduce costs associated with tool maintenance. We 

implemented five distinct algorithms: K-Nearest Neighbors (KNN), Decision Trees, Random Forests, 

LightGBM, and XGBoost. The results reveal that these models can accurately classify tool conditions as 

"worn" or "unworn," with LightGBM and XGBoost showing solid performance. Notably, an ensemble 

approach using a soft voting classifier combining KNN, Random Forest, and LightGBM achieved an accuracy 

of 0.9968 and a ROC AUC of 0.9998. This research underscores the potential of machine learning to transform 

traditional tool management practices, enabling proactive maintenance strategies that can significantly 

improve machining efficiency and product quality. Future work may explore integrating real-time data for 

further enhancements in predictive accuracy. 
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  1 Introduction 

Tool wear is a critical issue in machining operations as it directly impacts the workpiece's quality and the 

machining process's efficiency [1]. The gradual loss of material from the cutting tool due to friction and other 

factors not only affects the tool itself but also leads to changes in the machined surface and the overall 

performance of the machine tool Understanding and effectively managing tool wear is essential to maintaining 

production quality, reducing production time, and minimizing economic losses associated with tool 

replacement and poor workpiece quality [2]. 

Researchers have explored various traditional methods and technologies to address tool wear problems without 

resorting to machine learning or artificial intelligence. One approach involves using sensor fusion strategies to 

monitor cutting tool wear [2]. By integrating data from different sensors that capture information on tool 

conditions during machining processes, operators can make informed decisions regarding tool replacement 

and maintenance to ensure consistent workpiece quality and production efficiency. Additionally, the 

application of Ti/AlTiN multilayer coatings on cutting tools has been investigated to mitigate the crater wear 

process and improve the tribological properties of the tools [3]. These coating technologies offer a preventive 

measure against wear, enhancing the durability and performance of cutting tools in machining operations. On 

the other hand, leveraging machine learning techniques for tool wear classification has shown promising results 

in enhancing the accuracy and efficiency of wear monitoring systems. Studies have demonstrated using support 

vector machine (SVM) algorithms coupled with time and frequency domain analysis to correlate sound signals 

generated during cutting processes with tool wear conditions [4]. Training machine learning models on these 
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acoustic signatures makes it possible to classify tool wear states in real time, enabling proactive maintenance 

and replacement strategies to be implemented. 

Furthermore, the integration of machine learning classification models, such as convolutional neural networks 

(CNNs), has been explored for online tool wear classification during machining processes [5]. By utilizing 

real-time cutting force measurements and CNN approaches, researchers have achieved significant accuracy 

rates in classifying tool wear states, enabling timely identification and mitigation strategies to be deployed [5]. 

Additionally, the use of pre-trained CNNs for vision-based tool wear classification has been investigated, 

highlighting the importance of timely identification and classification of wear conditions to guide tool 

replacement decisions and minimize wear-related issues [6]. 

In conclusion, the problem of tool wear in machine tools is a multifaceted issue that requires a comprehensive 

approach for effective management. While traditional methods like sensor fusion and coating technologies 

offer preventive measures against wear, the use of machine learning and artificial intelligence techniques 

provides advanced capabilities for real-time wear monitoring and classification. By combining these 

approaches, manufacturers can optimize tool usage, enhance production efficiency, and ensure consistent 

quality in machining operations. 

In this study, various machine learning algorithms are implemented to address the tool wear problem. By 

leveraging the capabilities of machine learning, it becomes possible to predict tool wear with higher accuracy 

and reliability compared to traditional methods. The algorithms used in this study include K-Nearest Neighbors 

(KNN), Decision Tree, Random Forest, LightGBM, and XGBoost, each known for their unique strengths in 

handling different aspects of data. These models are compared in terms of their predictive accuracy to identify 

the most effective approach for tool wear prediction. Additionally, ensemble learning techniques are employed 

to combine the strengths of multiple models, aiming to achieve more robust and reliable results. Ensemble 

learning, through methods like voting classifiers, enhances the overall performance by mitigating the 

weaknesses of individual models, thus providing a more comprehensive solution to the tool wear problem. 

  2 Material and Method 

   2.1 Dataset 

The dataset, originating from the University of Michigan's System-level Manufacturing and Automation 

Research Testbed (SMART), 18 different machining experiments performed on wax blocks (2" x 2" x 1.5") 

with S shape using a CNC milling machine [7]. The general data from each of the 18 distinct experiments 

encompass the experiment number, the material used (wax), the feed rate, and the clamping pressure. Each 

experiment's outputs include the condition of the tool (unworn or worn) and whether the tool passed a visual 

inspection. Time series data were collected from the 18 experiments at a sampling rate of 100 ms and are 

individually documented in files named experiment_01.csv to experiment_18.csv. Each file contains 

measurements from the CNC machine's four motors (X, Y, Z axes, and spindle). These experiments varied tool 

conditions, feed rates, and clamping pressures to investigate their effects on machining performance. The 

aggregated dataset comprised 25,286 observations and 52 features, of which 12 were categorical, and 40 were 

numerical. 

  2.2 Proposed Method 

The proposed method, given in Figure 1, leverages a machine learning and ensemble learning approach to 

solve the given problem. This methodology comprises three main steps: data preprocessing, model 

implementation, and ensemble approach. 
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Data preprocessing is a crucial step that involves handling outliers and missing values, encoding categorical 

variables, standardizing the features, and performing stratified data splitting. Outlier handling ensures that 

extreme values do not skew the model's performance while addressing missing values, which prevents the 

introduction of bias. Encoding categorical variables transforms them into a numerical format suitable for 

machine learning algorithms. Standardization ensures that the features have a mean of zero and a standard 

deviation of one, essential for the proper convergence of many machine learning algorithms. Stratified splitting 

ensures that the train and test sets have similar distributions of the target variable, maintaining the 

representativeness of the data. 

Five different machine learning models are implemented to identify the best solution: K-Nearest Neighbors 

(KNN) [8], Decision Tree [9], Random Forest [10], LightGBM [11], and XGBoost [12]. Each base model 

undergoes hyperparameter optimization and is evaluated using 5-fold cross-validation on the training set to 

ensure robust performance and prevent overfitting. KNN is known for its simplicity and effectiveness in 

classification tasks [13]. Decision Trees provide interpretability by creating a tree-like structure of decisions 

[14]. Random Forest, an ensemble of Decision Trees, improves performance through averaging, which reduces 

variance and prevents overfitting [15]. LightGBM and XGBoost are gradient-boosting frameworks that build 

models sequentially, with each new model correcting errors made by the previous ones [11], [12]. These 

methods are compelling for large datasets and have been shown to achieve high predictive accuracy [16], [17]. 

The ensemble approach employs a voting classifier, evaluated on the test set. The voting classifier combines 

KNN, Random Forest, and LightGBM as voters. Ensemble methods are known to improve predictive 

performance by combining the strengths of multiple models [18]. This approach reduces the likelihood of 

overfitting and increases robustness and generalizability [19]. By aggregating the predictions of diverse 

models, the ensemble method can achieve higher accuracy and better generalization compared to individual 

models [20], [21]. 

 

Figure 1: An architecture of proposed method. 

  3 Experiments and Results 

     3.1.1  Data Preprocessing 

The dataset comprised 18 experimental CSV files and one training file containing tool status labels categorized 

as "worn" or "unworn". The initial step involved merging the 18 experimental files into a single dataset. This 
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merged dataset included features from the experimental files along with additional columns for exp_no, 

feedrate, clamp_pressure, and tool_condition extracted from the training file. 

The aggregated dataset consisted of 25,286 observations and 52 features. Among these features, 12 were 

categorical, and 40 were numerical. 

Outliers were detected in 27 features and addressed using the Interquartile Range (IQR) method to ensure a 

more robust dataset for analysis. 

To prepare the dataset for machine learning algorithms, we meticulously applied label encoding to the 

tool_condition feature. This process converted the categorical labels "worn" and "unworn" into numerical 

values, ensuring the accuracy of the data. One-hot encoding was then applied to the other categorical features 

to avoid any ordinal relationships being implied by the model. 

After implementing the encoding, the shape of the dataset was transformed to (25,286, 61), reflecting the 

addition of new columns from the one-hot encoding process. 

To standardize the dataset, Min-Max scaling (1) was applied to all features, bringing them into the range [0, 

1]. The exp_no feature was subsequently dropped to prevent potential issues with high correlation. 

𝑋′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
            (1) 

These preprocessing steps resulted in a clean, normalized, and well-structured dataset ready for subsequent 

machine learning model development and analysis. 

     3.1.2 Base Model 

Before the training phase, the dataset was stratified and split into training and testing sets with an 80-20 ratio, 

ensuring that both sets' class distribution of the tool_condition labels was preserved. A fixed random state 

was used to ensure the reproducibility of the results. 

Five different machine learning models, KNN, DT, RF, LightGBM, and XGBoost, respectively, were 

implemented to predict the tool condition of the dataset. 

To assess the models' performance and their ability to generalize to unseen data, a 5-fold cross-validation 

was conducted on the training set. This strategy ensured that each model was trained and validated on 

different portions of the data, providing a solid evaluation of the model's effectiveness. The results of this 

evaluation are presented in Table 1. 

Model Accuracy F1_Score ROC_AUC 

KNN 0.9063 0.9111 0.9675 

Decision Tree 0.988 0.9886 0.988 

Random Forest 0.994 0.9943 0.9999 

LightGBM 0.9952 0.9954 0.9998 

XGBoost 0.9953 0.9955 0.9999 

Table 1: Base model train phase results. 

     3.1.3 Hyperparameter Optimization 

The same split data and model were used to implement hyperparameter optimization. A 5-fold cross-

validation was performed during the training phase to evaluate the models. Hyperparameter optimization was 

then conducted using the following ranges in Table 2. 
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Model Hyperparameter Range 

KNN 
Number of 

neighbors 
2 to 50 

Decision Tree Maximum depth 1 to 20 

 
Minimum sample 

split 
2 to 30 

Random Forest Maximum depth 8 to 15 

 
Minimum sample 

split 
15 to 20 

 
Number of 

estimators 
200, 300 

LightGBM Learning Rate 0.01 to 0.1 

 
Number of 

estimators 
300, 500 

XGBoost Learning rate 0.01 to 0.1 

 Maximum depth 5 to 8 

 
Number of 

estimators 
100, 200 

Table 2: Models and their hyperparameter ranges. 

The performance of each model was evaluated based on accuracy, F1-score, and ROC_AUC on the test set. 

The results of the best models after hyperparameter optimization with the train set are summarized in Table 

3. 

Model Accuracy F1_Score ROC_AUC Best Parameters 

KNN 0.9203 0.9242 0.9666 {'n_neighbors': 3} 

Decision Tree 0.9873 0.988 

0.9901 {'max_depth': 18, 

'min_samples_split': 

4} 

Random Forest 0.9926 0.993 

 

 

0.9998 

{'max_depth': None, 

'min_samples_split': 

15, 'n_estimators': 

200} 

LightGBM 0.9968 0.9969 

 

0.9999 

{'learning_rate': 

0.1, 'n_estimators': 

500} 

XGBoost 0.9958 0.996 

 

0.9999 

{'learning_rate': 

0.1, 'max_depth': 8, 

'n_estimators': 200} 

Table 3: Models and their hyperparameter results. 

 

     3.1.4 Model Evaluation 

Accuracy measures how correct a model's predictions are overall. It is calculated as the ratio of correctly 

predicted instances to the total number of instances in the dataset. The formula for accuracy is: 
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𝐴𝑐𝑐 =
𝑇𝑃+TN

𝐴𝑙𝑙
             (2) 

Accuracy is a valuable metric when the classes are balanced, as it provides a straightforward measure of how 

often the model is correct. 

The F1-Score, which is the harmonic mean of precision and recall, serves as a metric that balances false 

positives and false negatives. It is particularly beneficial for imbalanced datasets because it takes into account 

both precision (the correctness of positive predictions) and recall (the capability to identify all positive cases). 

The formula for the F1-score is: 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
Precision×Recall

Precision+Recall
           (3) 

where 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+FP
            (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+FN
            (5) 

ROC AUC evaluates the area under the ROC curve, indicating the model's capacity to distinguish between 

positive and negative classes. The value ranges from 0 to 1, where higher values reflect superior performance. 

𝑅𝑂𝐶_𝐴𝑈𝐶 = ∫𝑇𝑃𝑅 × 𝑑(𝐹𝑃𝑅)          (6) 

where TPR is true positive rate, FPR is false positive rate 

Accuracy was selected as the primary evaluation metric for this study because the dataset is close to balanced, 

with 13,308 instances labelled as "worn" (52.63%) and 11,978 instances labelled as "unworn" (47.37%). In a 

balanced dataset, accuracy provides a clear and straightforward measure of model performance, as it equally 

considers the correct predictions of both classes. Additionally, since there is no significant class imbalance, the 

potential issues of overemphasizing either precision or recall (which the F1-score addresses) are minimized. 

          3.1.5 Accuracy Comparison of Models 

Prediction results are obtained from the test set and classification report results are given in Table 4. 

Model Tool Condition Accuracy F1_Score Support 

KNN Unworn 0.9306 0.9269 2396 

 Worn  0.9339 2662 

Decision Tree Unworn 0.9871 0.9864 2396 

 Worn  0.9878 2662 

Random Forest Unworn 0.9917 0.9912 2396 

 Worn  0.9921 2662 

LightGBM Unworn 0.9972 0.9971 2396 

 Worn  0.9974 2662 

XGBoost Unworn 0.9962 0.9960 2396 

 Worn  0.9964 2662 

Table 4: Models and their prediction results on test set. 

Experiment results are given in Table 4 and Figure 1 and show that most of the models have good enough 

accuracy to handle tool wear classification. LightGBM and XGBoost are significantly accurate classifications 

compared to others.  
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Figure 2: Confusion matrix of 5 models on test sets. KNN(a), DT(b), RF(c), LightGBM(d), XGBoost(e). 

      3.1.6 Ensemble Learning 

In ensemble learning, a soft voting classifier is an advanced technique that merges the probabilistic outputs of 

several machine learning models to determine the final prediction. This classifier makes decisions based on 

the combined probabilities provided by all the contributing models. The soft voting classifier operates through 

the following steps: 

Base model training: Multiple base classifiers, denoted as  𝐶1, 𝐶2 , . . , 𝐶𝑛 are independently trained on the same 

dataset. These classifiers can be homogeneous (same algorithm) or heterogeneous (different algorithms) 

Probability Prediction: For given input data x, each classifier 𝐶𝑖 produces a predicted probability vector: 

𝑃𝑖 = [𝑝𝑖1, 𝑝𝑖2 , . . , 𝑝𝑖𝑗]            (7) 

where 𝑝𝑖𝑗 is the predicted probability that belongs to classifier 𝐶𝑖 and j is the total predicting class number. 

The formula for the soft-voting classifier final decision: 

�̂� = arg𝑚𝑎𝑥∑ 𝑝𝑖𝑗
𝑚

𝑗=1
           (8) 

where 𝑝𝑖𝑗 = 𝑃𝑖(C ∣ x) is probability for each class C given an input x. 

For a classifier task with m  models and C classes, each model j outputs a probability distribution 𝑃𝑖(c ∣ x)  for 

each given class C. This approach effectively leverages the strengths and mitigates the weaknesses of 

individual models, leading to enhanced overall performance. 

In this study, KNN, RF, and LightGBM models are utilized as constituent models for the soft voting classifier. 

KNN is a non-parametric method that classifies a sample by looking at the predominant class among its nearest 
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neighbors. RF is an ensemble approach that utilizes a collection of decision trees to boost predictive accuracy 

and prevent overfitting by averaging the predictions from several trees. LightGBM is a gradient-boosting 

framework that utilizes tree-based algorithms, renowned for its efficiency and outstanding performance. The 

combined use of these diverse models in a soft voting classifier resulted in an exceptional performance, 

achieving an accuracy of 0.9968, an F1 score of 0.9970, and an ROC AUC of 0.9998, demonstrating the 

effectiveness of this ensemble approach. 

4 Conclusion 

This research highlights the ability of machine learning algorithms to accurately predict tool wear in machining 

operations. By utilizing aggregated dataset and implementing K-Nearest Neighbors, Decision Trees, Random 

Forests, LightGBM, and XGBoost, we achieved notable classification accuracy for tool conditions as either 

“unworn” or “worn”. While all models show over 90% accuracy, LightGBM outperforms all. With the 

proposed method, the ensemble method, particularly the soft voting classifier combining KNN, Random 

Forest, and LightGBM, yielded exceptional results with an accuracy of 0.9968 and ROC AUC of 0.9998. 

These findings highlight the potential of machine learning to enhance tool monitoring, allowing manufacturers 

to implement proactive maintenance strategies. By improving prediction accuracy, companies can reduce costs 

associated with tool replacement and improve production efficiency.  

Future research may focus on integrating real-time data with different types of materials and exploring 

additional algorithms to further enhance predictive capabilities with less features. Overall, this study provides 

a promising framework for leveraging advanced analytics in manufacturing to optimize operational 

performance. 
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