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A B S T R A C T

Stock price prediction remains a complex challenge in financial markets. This study introduces a novel Long 
Short-Term Memory (LSTM) model optimized by Sand Cat Swarm Optimization (SCSO) for stock price predic
tion. The research evaluates multiple algorithms including ANN, LSTM variants, Auto-ARIMA, Gradient Boosted 
Trees, DeepAR, N-BEATS, N-HITS, and the proposed LSTM-SCSO using DAX index data from 2018 to 2023. 
Model performance was assessed through Mean Squared Error, Mean Absolute Error, Mean Absolute Percentage 
Error, and out-of-sample R2 metrics. Statistical significance was validated using Model Confidence Set analysis 
with 5000 bootstrap replications. Results demonstrate LSTM-SCSO’s superior performance across all evaluation 
metrics. The model achieved an annualized return of 66.25% compared to the DAX index’s 47.45%, with a 
Sharpe ratio of 2.9091. The integration of technical indicators and macroeconomic variables enhanced the 
model’s predictive capabilities. These findings establish LSTM-SCSO as an effective tool for stock price predic
tion, offering practical value for investment decision-making.

1. Introduction

Stock price prediction is a critical yet challenging task in financial 
markets. The complexity arises from the multitude of factors influencing 
stock prices, including economic indicators, company performance, 
market sentiment, and global events. Accurate predictions can signifi
cantly impact investment strategies, risk management, and financial 
decision-making processes. The stock market’s inherent volatility and 
sensitivity to various external factors make it a complex system to 
analyze and predict. Traditional forecasting methods often struggle to 
capture the non-linear relationships and temporal dependencies present 
in stock price data. This complexity necessitates the development of 
more sophisticated prediction models that can adapt to changing market 
conditions and capture intricate patterns in financial time series. 
(Hellström and Holmström, 1998; Kumar & Dadhich, 2014).

The field of artificial intelligence (AI) is currently experiencing sig
nificant popularity, and there are numerous studies that have been 
conducted on the subject (Gülmez, 2023c, 2023b, 2023a, 2024a, 2024b, 
2024c, 2024d; Gülmez, Emmerich, & Fan, 2024; Gülmez & Kulluk, 
2019, 2023a). AI and machine learning techniques have emerged as 
powerful tools for addressing the challenges of stock price prediction. 

These methods can analyze vast amounts of data, identify complex 
patterns, and make predictions based on historical trends and current 
market conditions. Among these techniques, Long Short-Term Memory 
(LSTM) networks have shown particular promise due to their ability to 
capture long-term dependencies in sequential data, making them 
well-suited for time series forecasting tasks such as stock price predic
tion (Chopra & Sharma, 2021; M et al., 2022).

Time series analysis is a popular technique used to analyze and 
predict stock prices. One common approach is to use ANNs such as 
recurrent neural networks (RNNs) and LSTM networks. ANNs can pro
cess large amounts of data and identify patterns that might be difficult 
for humans to detect. RNNs are particularly useful for time series anal
ysis because they can consider the sequence of data points and learn 
from past trends to make future predictions. LSTM networks are a type of 
RNN that are designed to handle long-term dependencies and are 
especially useful for predicting stock prices over longer periods.

In this paper, a novel LSTM model optimized by SCSO Algorithm 
(Seyyedabbasi & Kiani, 2023) is proposed to predict stock prices. The 
LSTM model is a type of recurrent neural network that can learn from 
and make predictions on sequential data, such as time series data. The 
SCSO Algorithm is a meta-heuristic optimization algorithm that is used 
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to optimize the LSTM model. The resulting model is able to make ac
curate predictions of stock prices, taking into account historical data, 
market trends, and other relevant factors. By using this model, traders 
and investors can make more informed decisions about when to buy and 
sell stocks, potentially leading to increased profits and reduced risk. This 
paper proposes a new deep-learning model optimized by SCSO to predict 
stock prices.

The primary contributions and innovations of this study are as 
follows: 

1. Novel LSTM-SCSO Model: This paper introduces a new deep-learning 
model that combines LSTM networks with the SCSO algorithm for 
stock price prediction. This is the first application of SCSO in opti
mizing LSTM for financial forecasting, representing a significant 
advancement in the field.

2. Comprehensive Performance Comparison: The study provides a 
thorough comparison of the proposed LSTM-SCSO model against 
other popular algorithms (ANN, LSTM1D, LSTM2D, LSTM3D, LSTM- 
GA, Auto-ARIMA, GBT, DeepAR, N-BEATS, N-HITS) using multiple 
evaluation metrics. This comprehensive analysis offers insights into 
the relative strengths and weaknesses of different approaches to 
stock price prediction.

3. Improved Prediction Accuracy: The LSTM-SCSO model demonstrates 
superior performance across various stock tickers, addressing the 
challenge of accurate stock price forecasting. This improvement in 
prediction accuracy can lead to more informed investment decisions 
and better risk management strategies.

4. Adaptive Optimization: By incorporating SCSO, the model can 
adaptively optimize LSTM parameters, potentially capturing market 
dynamics more effectively than traditional optimization methods. 
This adaptive approach addresses the challenge of model flexibility 
in the face of changing market conditions.

5. Practical Application to DAX Index: The study applies the proposed 
model to real-world data from the DAX index, demonstrating its 
practical utility in a major financial market. This application pro
vides valuable insights for investors and traders operating in the 
German stock market.

By addressing these points, this research contributes to the ongoing 
efforts to improve the accuracy and reliability of stock price predictions, 
ultimately aiming to enhance decision-making processes in financial 
markets.

2. Literature review

2.1. Traditional time series analysis methods

Traditional time series analysis methods have long been employed in 
stock market prediction. These methods typically rely on historical data 
to forecast future trends.

Duan et al. (2021) proposed a non-linear delay grey prediction model 
using impulse delay differential equations and particle swarm optimi
zation, demonstrating superior performance compared to conventional 
grey and time series models. Xiao and Su (2022) applied the ARIMA 
(autoregressive integrated moving average) model to predict stock pri
ces, comparing it with deep learning methods. Maguluri and Ragupathy 
(2020) used the ARIMA model for future price prediction and fore
casting in stock markets. Almaafi et al. (2023) evaluated and compared 
the performance of ARIMA and XGBoost models in predicting weekly 
closing prices of Saudi Telecom Company stock. Zhang et al. (2022)
employed a mixed model combining random walk and time series ap
proaches for stock price forecasting. Li and Abo Keir (2022) proposed a 
Stock Price Prediction mathematical Model (SPPM) based on BP neural 
network with high-frequency data. Nakagawa et al. (2019) introduced a 
stock price prediction method using k-medoid clustering with indexing 
dynamic time warping. Ilyas et al. (2022) proposed a hybrid model using 

a fully modified Hodrick–Prescott filter for noise reduction in stock price 
data. Fujimoto et al. (2022) presented the Uncertainty Aware 
Trader-Company technique (UTC) to combine the TC technique with 
probabilistic modeling for probabilistic forecasts and uncertainty 
estimations.

2.2. Machine learning approaches

Machine learning algorithms have gained significant traction in 
stock price prediction due to their ability to handle complex, non-linear 
relationships in financial data.

Basak et al. (2019) used random forests and gradient-boosted deci
sion trees (XGBoost) to predict the direction of stock market prices, 
achieving high accuracy for medium to long-run predictions. Bazrkar 
and Hosseini (2023) utilized PSO parameter adjustment to enhance 
stock market prediction using a Support Vector Machine (SVM). Dwi
vedi and Gore (2021) proposed a historical data-based ensemble system 
combining various machine learning-based prediction models using 
LASSO regression regularization. Jafari and Haratizadeh (2022) intro
duced GCNET, a graph-based prediction model for stock price move
ment using graph convolutional networks. G. Li et al. (2022) evaluated 
stock market forecasting frameworks for AI and embedded real-time 
systems, focusing on neural network prediction methods. Staffini 
(2022) introduced a Deep Convolutional Generative Adversarial 
Network (DCGAN) architecture for forecasting the closing price of 
stocks. Rajanikanth, Haritha, and Shankar (2023) used Linear Regres
sion (LR) to develop a new Stock Close Price Prediction (SCPP) algo
rithm. Tang et al. (2020) developed forecasting models with deep 
learning technology for share price prediction in the logistics industry. 
Vanstone et al. (2019) incorporated sentiment predictors based on news 
articles and Twitter posts to improve stock price predictions. Yu et al. 
(2020) proposed a stock price forecasting model based on the LLE-BP 
neural network. Mian (2023) evaluated stock closing prices using 
Transformer learning, comparing it with ARIMA, LSTM, and Random 
Forest algorithms. Wang et al. (2022) developed a stock price fore
casting model based on wavelet filtering and an ensembled machine 
learning approach.

2.3. Deep learning models

Deep learning models, particularly those based on neural networks, 
have become increasingly popular for stock price prediction due to their 
ability to capture complex temporal dependencies.

Yuan et al. (2023) developed a PSO-LSTM stock forecasting model to 
improve accuracy by optimizing LSTM model parameters. Mehtab and 
Sen (2020) used CNN and LSTM-based deep learning models for stock 
price prediction. Li et al. (2020) proposed a stock forecasting model 
FS-LSTM based on the 5G Internet of Things, combining feature selec
tion and LSTM. Bose et al. (2021) developed a hybrid model by 
cascading Multivariate Adaptive Regression Splines (MARS) and Deep 
Neural Network (DNN) to predict closing prices of stock. Chen et al. 
(2024) introduced a multi-feature stock price prediction model based on 
multi-feature calculation, LASSO feature selection, and the Ca-LSTM 
network. Gao et al. (2021) compared LSTM and GRU models for stock 
price prediction under different dimension reduction methods. Joel 
et al. (2023) proposed an Island Parallel-Harris Hawks Optimizer 
(IP–HHO)-optimized Convolutional LSTM (ConvLSTM) with an auto
correlation model. Li et al. (2023) developed a novel LASSO-ATT-LSTM 
model for stock price prediction based on multi-source heterogeneous 
data. Liao et al. (2024) introduced LEET, a stock market forecast model 
with long-term emotional change-enhanced temporal analysis. Zhang 
et al. (2024) proposed SMPDF, a stock movement prediction model 
based on stock prices and text data. Kumar Chandar and Punjabi (2022)
created an effective stock market prediction model combining technical 
indicators from historical data and an Elman neural network (ENN). Luo 
and Ji (2022) developed a hybrid stock price prediction model using 
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improved particle swarm optimization (IPSO) and LSTM.

2.4. Novel approaches and recent trends

Recent research has explored novel approaches to stock price pre
diction, incorporating diverse data sources and advanced techniques.

Zhang et al. (2024) introduced SMPDF, a stock movement prediction 
model based on stock prices and text data, highlighting the growing 
trend of incorporating textual information. Zhu et al. (2024)presented 
PMANet, an advanced hybrid model for stock price prediction based on 
Multi-scale Timing Feature Attention. Li et al. (2024) proposed a 
DeepAR model based on the attention mechanism (DeepARA) for both 
single-point and probabilistic predictions of stock prices. Liao et al. 
(2024) developed LEET, a stock market forecast model with long-term 
emotional change-enhanced temporal analysis, incorporating senti
ment analysis into prediction models. Chen et al. (2024) introduced a 
multi-feature stock price prediction model based on multi-feature 
calculation, LASSO feature selection, and the Ca-LSTM network. Li 
et al. (2023) developed a novel LASSO-ATT-LSTM model for stock price 
prediction based on multi-source heterogeneous data. Mian (2023)
evaluated stock closing prices using Transformer learning, comparing it 
with traditional and deep learning methods. Jafari and Haratizadeh 
(2022) introduced GCNET, a graph-based prediction model for stock 
price movement using graph convolutional networks. Staffini (2022)
introduced a Deep Convolutional Generative Adversarial Network 
(DCGAN) architecture for forecasting the closing price of stocks. Chan
dar (2021) developed a hybrid model to improve stock price prediction 
utilizing ANFIS variations. DeepAR, introduced as a probabilistic fore
casting methodology, employs autoregressive recurrent neural networks 
trained on multiple related time series. The model’s capability to pro
duce accurate probabilistic forecasts has been demonstrated particularly 
in retail business applications, where precise demand forecasting is 
crucial for inventory optimization. DeepAR’s architecture overcomes 
traditional forecasting challenges through its deep learning approach, 
requiring minimal manual intervention while maintaining superior ac
curacy (J. Li et al., 2024; Salinas et al., 2020).

The N-HITS model addresses long-horizon forecasting challenges 
through innovative hierarchical interpolation and multi-rate data sam
pling techniques. The model’s architecture enables sequential prediction 
assembly, emphasizing components with varying frequencies and scales. 
N-HITS has demonstrated remarkable efficiency, achieving an average 
accuracy improvement of 20% compared to transformer architectures 
while reducing computational complexity by a factor of 50. The model’s 
theoretical foundation is supported by proven approximation capabil
ities for extended forecast horizons under smoothness conditions (Challu 
et al., 2023).

N-BEATS represents a significant advancement in univariate time 
series forecasting through its deep neural architecture, incorporating 
backward and forward residual links with fully-connected layers. This 
architecture has demonstrated exceptional versatility across diverse 
domains, improving forecast accuracy by 11% over statistical bench
marks. The model’s success without domain-specific components chal
lenges conventional wisdom, suggesting that deep learning primitives 
alone can effectively address various forecasting challenges (Oreshkin 
et al., 2020).

Recent developments in gradient-boosted trees, particularly high
lighted in M5 competition solutions, have established new benchmarks 
in forecasting accuracy. These approaches address critical challenges in 
time series forecasting, including overfitting, leakage, and non- 
stationarity. The integration of cross-validation strategies, augmenta
tion techniques, and parameter tuning has proven highly effective, 
leading to winning solutions in major forecasting competitions. Hybrid 
approaches combining gradient-boosted trees with neural networks 
have shown particular promise, especially in hierarchical time series 
forecasting. These hybrid models demonstrate superior performance in 
both point and probabilistic forecasting tasks, emphasizing the 

importance of diverse model ensembles and careful validation set con
struction (Chiew & Choong, 2022; Lainder & Wolfinger, 2022; H. Li 
et al., 2020).

This literature review section demonstrates the diverse approaches 
and ongoing advancements in stock price prediction, ranging from 
traditional time series methods to cutting-edge deep learning and hybrid 
models. The field continues to evolve, with researchers exploring novel 
techniques to improve prediction accuracy and incorporate diverse data 
sources. The review of the literature on stock price prediction reveals 
several key trends and gaps in the field. Traditional time series methods, 
such as ARIMA, continue to be relevant but are increasingly being 
complemented or replaced by more advanced techniques. Machine 
learning approaches, particularly ensemble methods and support vector 
machines, have shown promising results in capturing non-linear re
lationships in financial data.

Deep learning models, especially those based on LSTM architectures, 
have emerged as powerful tools for stock price prediction due to their 
ability to capture long-term dependencies in time series data. The trend 
towards hybrid and ensemble models, combining multiple techniques, 
reflects the complex nature of stock price movements and the need for 
diverse approaches to capture different aspects of market behavior.

Recent research has also focused on incorporating diverse data 
sources, including textual data from news and social media, to provide a 
more comprehensive view of factors influencing stock prices. Addi
tionally, there’s an increasing emphasis on developing models that can 
provide not just point predictions, but also uncertainty estimates and 
probabilistic forecasts.

Despite these advancements, several gaps remain in the literature: 

1. While many studies have applied various optimization techniques to 
LSTM models, the potential of the SCSO algorithm in this context has 
not been explored.

2. The application of 2D and 3D LSTM architectures to stock price 
prediction, despite their success in other domains, has been limited.

3. There’s a need for more comprehensive comparisons of different 
deep learning architectures and optimization techniques on a com
mon dataset to establish clear benchmarks.

4. The economic value and practical applicability of advanced predic
tion models in real-world trading scenarios are often not thoroughly 
addressed.

The present study aims to address these gaps by introducing a novel 
LSTM-SCSO model, comparing it with other LSTM variants including 2D 
and 3D architectures, and providing a thorough analysis of its perfor
mance and potential economic implications. This approach not only 
contributes to methodological advancement in the field but also aims to 
bridge the gap between academic research and practical application in 
stock price prediction.

3. Material and method

3.1. Time series analysis

In time series analysis, data collected over time is explored and 
analyzed to understand and identify patterns, trends, and seasonality. 
Trend refers to the long-term upward or downward movement in a time 
series. It shows the overall direction in which the data is moving over an 
extended period. It helps to understand the underlying growth or decline 
in the variable being studied (Bi et al., 2021).

Seasonality, on the other hand, refers to a repeating pattern that 
occurs within a specific time frame. It can be a daily, weekly, monthly, 
or yearly pattern. Seasonal components often occur due to various fac
tors, such as weather, holidays, or events that impact the data regularly 
and predictably (Kim & Kim, 2021).

To analyze time series data, often used statistical techniques such as 
decomposition, smoothing, and forecasting models. Decomposition 
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helps in separating the time series into its components, including trend, 
seasonality, and residuals (random variations). This enables to exami
nation and analysis of each component separately, gaining insights into 
their individual contributions to the overall pattern (Talavera-Llames 
et al., 2018).

Smoothing techniques, like moving averages and exponential 
smoothing, are used to reduce noise and highlight the underlying pat
terns in the data. They provide a clearer view of the trend and season
ality by removing random fluctuations (Hamilton, 2020).

Overall, time series analysis, with its components of trend, season
ality, and forecasting, allows one to gain valuable insights, make 
informed decisions, and predict future behavior based on the patterns 
observed in the data (Almasarweh & Alwadi, 2018).

3.2. ANN

Artificial neural networks (ANNs) are a class of machine learning 
models inspired by the structure and functioning of biological neural 
networks. They are designed to mimic the behavior of interconnected 
neurons in the human brain to perform complex computational tasks. 
ANNs consist of multiple layers of artificial neurons, known as nodes or 
units, organized into an input layer, one or more hidden layers, and an 
output layer (Gülcü, 2022).

The process of using ANNs involves training the network on a labeled 
dataset to learn the underlying patterns and relationships within the 
data. During training, the weights and biases of the connections between 
the nodes are adjusted iteratively through a process called back
propagation. Backpropagation calculates the gradients of the network’s 
error with respect to its weights, allowing the model to update and refine 
its parameters to minimize prediction errors.

The nodes in an ANN receive inputs, apply activation functions, and 
produce outputs that are passed to the next layer. The activation func
tions introduce non-linearities to enable the network to capture complex 
relationships between inputs and outputs. Standard activation functions 
include sigmoid, tanh, and ReLU (Rectified Linear Unit).

The power of ANNs lies in their ability to learn from complex and 
high-dimensional data, extract intricate patterns, and make accurate 
predictions or classifications. They have been successfully applied to a 
wide range of tasks, including image recognition, natural language 
processing, speech recognition, and stock market prediction.

However, it’s important to note that ANNs require careful architec
tural design, parameter tuning, and substantial amounts of labeled 
training data to achieve optimal performance. Overfitting, a phenome
non where the model memorizes the training data without generalizing 
well to unseen data, is also a concern. Regularization techniques and 
validation strategies are used to address overfitting and ensure the 
model’s generalization capability (Dengiz et al., 2009).

3.3. LSTM

LSTM (Long Short-Term Memory) is a type of RNN architecture that 
is specifically designed to handle long-term dependencies in sequential 
data. It addresses the vanishing gradient problem in traditional RNNs 
and allows for more effective learning and prediction (Mehtab & Sen, 
2020).

LSTM units have a more complex structure compared to standard 
neurons in RNNs. They consist of a cell state, three gating mechanisms 
(input gate, forget gate, and output gate), and an activation function. 
These components work together to regulate the flow of information 
through the network. The forget gate determines how much of the 
previous cell state is retained or forgotten. The input gate determines 
which parts of the current input are essential to update the cell state. The 
candidate cell state computes the new candidate values to be added to 
the cell state. The cell state is updated by combining the forget gate, 
input gate, and candidate cell state. The output gate determines how 
much of the updated cell state is exposed as the output. Finally, the 

output of the LSTM unit is computed by multiplying the updated cell 
state with the output gate after applying an activation function, typically 
a hyperbolic tangent or a sigmoid function (Yuan et al., 2023).

LSTM effectively captures and retains long-term dependencies in 
sequential data, making it a powerful tool for tasks such as language 
modeling, speech recognition, and time series prediction (Mittal, Kumar, 
Roy, Balasubramanian, & Chaudhuri, 2019).

3.4. Sand Cat swarm algorithm

The Sand Cat Swarm Optimization (SCSO) algorithm is a nature- 
inspired metaheuristic optimization technique based on the hunting 
behavior of sand cats (Seyyedabbasi & Kiani, 2023). In the context of 
stock price prediction, SCSO is used to optimize the parameters of the 
LSTM model, enhancing its predictive capabilities.

Key features of SCSO relevant to LSTM optimization include: 

1. Adaptive search range: SCSO employs a gradually decreasing sensi
tivity range, allowing for broad exploration in early iterations and 
fine-tuning in later stages. This feature helps in finding optimal LSTM 
parameters by balancing exploration and exploitation.

2. Position update mechanism: The algorithm updates the position of 
search agents (representing LSTM parameters) based on the best- 
known solution and current position, enabling efficient navigation 
of the parameter space.

3. Randomized angle selection: SCSO uses a random angle to determine 
the direction of movement, helping to avoid local optima and explore 
diverse regions of the parameter space.

In the context of LSTM for stock price prediction, SCSO addresses 
several challenges: 

1. Hyperparameter tuning: SCSO optimizes LSTM hyperparameters 
such as the number of hidden layers, neurons per layer, and learning 
rate, which are crucial for model performance.

2. Feature selection: The algorithm can be used to identify the most 
relevant input features for stock price prediction, improving model 
efficiency and accuracy.

3. Overfitting prevention: By optimizing the model’s architecture and 
regularization parameters, SCSO helps in building LSTM models that 
generalize well to unseen data.

The SCSO-optimized LSTM model aims to capture complex temporal 
dependencies in stock price data more effectively than traditional 
optimization methods, potentially leading to improved prediction ac
curacy and robustness.

3.5. Models

3.5.1. ANN
Table 1 presents the architecture of the ANN model utilized in this 

study. The network consists of four layers, starting with an input layer 
with 20 nodes. Following the input layer are two dense layers, each 
comprising 10 nodes, enabling the model to learn complex patterns and 
representations from the data. A dropout layer with a dropout rate of 0.5 
is incorporated after the second dense layer to prevent overfitting and 

Table 1 
ANN model architecture.

Layer Parameter

Input 20
Dense 10
Dense 10
Dropout 0.5
Dense 1
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enhance generalization. Finally, the output layer consists of a single 
node appropriate for the specific task at hand. This ANN architecture is 
carefully designed to balance complexity and simplicity, aiming to 
achieve accurate predictions while avoiding overfitting issues.

3.5.2. LSTM1D
Table 2 illustrates the architecture of the LSTM1D model used in this 

study. The model is well-suited for sequence data because it captures 
long-term dependencies. The input layer contains 20 nodes, allowing the 
model to process sequences of a certain length. Next, an LSTM layer with 
10 memory cells is employed to extract relevant temporal patterns from 
the data. Following the LSTM layer, there is a dense layer with 10 nodes, 
facilitating the learning of complex representations. To prevent over
fitting, a dropout layer with a dropout rate of 0.5 is included, which aids 
in enhancing the generalization of the model. Finally, the output layer 
consists of a single node suitable for the specific task under consider
ation. The LSTM1D architecture is thoughtfully designed to handle 
sequential data effectively, enabling accurate predictions and capturing 
the underlying temporal dynamics of the dataset.

3.5.3. LSTM2D
Table 3 presents the architecture of the LSTM2D model used in this 

study. The LSTM2D model is specifically designed to handle two- 
dimensional sequential data, such as time series data with multiple 
features or images with temporal dependencies. The input layer consists 
of 20 nodes, which allows the model to process sequences with a certain 
length and multiple features. Subsequently, two LSTM layers are 
employed, each with 10 memory cells. These LSTM layers enable the 
model to effectively capture complex temporal patterns and de
pendencies in the data. Following the LSTM layers, a dense layer with 10 
nodes is utilized to learn higher-level representations from the extracted 
features. A dropout layer with a dropout rate of 0.5 is incorporated to 
prevent overfitting and improve generalization. Finally, the output layer 
consists of a single node well-suited for the specific task at hand. The 
LSTM2D architecture is carefully crafted to handle the complexities of 
two-dimensional sequential data, aiming to achieve accurate predictions 
while capturing the underlying temporal relationships in the dataset.

3.5.4. LSTM3D
Table 4 presents the architecture of the LSTM3D model used in this 

study. The LSTM3D model is specifically designed to handle three- 
dimensional sequential data, such as spatiotemporal data or videos 
with temporal dependencies and spatial structures. The input layer 
contains 20 nodes, allowing the model to process sequences with a 
certain length, multiple features, and spatial dimensions. Subsequently, 
three LSTM layers are utilized, each with 10 memory cells. These LSTM 
layers enable the model to effectively capture complex spatiotemporal 
patterns and dependencies. The LSTM3D architecture is particularly 
well-suited for tasks where the data’s temporal and spatial aspects are 
critical for accurate predictions. After the LSTM layers, a dense layer 
with 10 nodes is employed to learn higher-level representations from the 
extracted spatiotemporal features. A dropout layer with a dropout rate 
of 0.5 is included to prevent overfitting and enhance generalization. 
Finally, the output layer consists of a single node suitable for the specific 
task under consideration. The LSTM3D architecture is thoughtfully 
designed to handle the intricacies of three-dimensional sequential data, 

aiming to achieve accurate predictions while capturing the underlying 
spatiotemporal relationships in the dataset.

3.5.5. Auto-ARIMA
Autoregressive Integrated Moving Average (ARIMA) models are 

implemented as statistical benchmarks for time series forecasting. The 
Auto-ARIMA approach automatically identifies the optimal parameters 
for the ARIMA (p,d,q) model, where p represents the order of the 
autoregressive term, d is the degree of differencing, and q is the order of 
the moving average term. This automated process eliminates subjective 
parameter selection and ensures reproducibility.

The Auto-ARIMA algorithm employs a stepwise approach to deter
mine the best combination of parameters. The process begins with the 
evaluation of the time series’ stationarity through unit root tests. The 
degree of differencing (d) is determined based on these tests. Subse
quently, the algorithm performs a grid search over different combina
tions of p and q values. The Akaike Information Criterion (AIC) is 
utilized as the primary metric for model selection, as it provides a 
balanced assessment of model complexity and goodness of fit.

The implementation includes seasonal components when necessary, 
extending the model to SARIMA (p,d,q) (P, D, Q)m form, where P, D, and 
Q represent the seasonal equivalents of p, d, and q, and m denotes the 
seasonal period. The algorithm also incorporates drift terms when 
appropriate, based on trend analysis of the time series (Almasarweh & 
Alwadi, 2018).

3.5.6. Gradient Boosted Trees (GBT)
Gradient Boosted Trees, implemented through the XGBoost frame

work, serve as a machine learning benchmark in this study. GBT oper
ates by constructing an ensemble of decision trees sequentially, where 
each subsequent tree aims to correct the prediction errors of its pre
decessors. This approach is particularly effective for time series fore
casting due to its ability to capture non-linear relationships and handle 
multiple input features simultaneously. The implementation utilizes a 
gradient-boosting framework that optimizes a regularized objective 
function. This function combines a convex loss function with a regula
rization term to control model complexity. The model processes the 
technical indicators and macroeconomic variables as features, main
taining their temporal order in the training process. Early stopping is 
implemented to prevent overfitting, where the model training termi
nates if no improvement is observed in the validation set for a specified 
number of rounds. Feature importance analysis is incorporated into the 
GBT framework, providing insights into the relative significance of 
different technical and macroeconomic indicators. The model employs a 

Table 2 
LSTM1D architecture.

Layer Parameter

Input 20
LSTM 10
Dense 10
Dropout 0.5
Dense 1

Table 3 
LSTM2D architecture.

Layer Parameter

Input 20
LSTM 10
LSTM 10
Dense 10
Dropout 0.5
Dense 1

Table 4 
LSTM3D architecture.

Layer Parameter

Input 20
LSTM 10
LSTM 10
LSTM 10
Dense 10
Dropout 0.5
Dense 1
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tree-specific learning rate to control the contribution of each tree to the 
final prediction. Cross-validation is performed using a time-series-aware 
splitting strategy to maintain the temporal structure of the data (Chiew 
& Choong, 2022; Lainder & Wolfinger, 2022; Nasios & Vogklis, 2022).

3.5.7. DeepAR
DeepAR, developed by Amazon Research, represents a probabilistic 

forecasting model based on autoregressive recurrent networks. The 
model combines deep learning with statistical forecasting principles to 
generate probabilistic predictions. This architecture is particularly 
suitable for financial time series due to its ability to capture complex 
patterns and provide uncertainty estimates in its forecasts.

The implementation consists of multiple LSTM layers that process 
the input sequences of historical values and associated features. DeepAR 
learns a global model across time series in the dataset, enabling it to 
learn patterns that are shared across different stocks. The model outputs 
parameters of a probability distribution, typically Gaussian, for each 
time step in the forecast horizon. This probabilistic approach provides 
not only point forecasts but also confidence intervals for the predictions.

The training process employs a maximum likelihood estimation 
approach, where the model learns to maximize the probability of the 
observed data given the predicted distribution parameters. The archi
tecture incorporates time-varying features, including the technical in
dicators and macroeconomic variables, as additional inputs to the 
network. Temporal dependencies are maintained through the sequential 
processing of input data, while the model’s probabilistic nature allows 
for the quantification of prediction uncertainty (Salinas et al., 2020).

3.5.8. N-BEATS
Neural Basis Expansion Analysis for Time Series (N-BEATS) repre

sents a deep neural architecture specifically designed for time series 
forecasting. The model employs a unique architectural design based on 
backward and forward residual links, with no direct use of traditional 
time series decomposition techniques. This deep learning approach 
processes raw time series data through specialized blocks that auto
matically learn decomposition patterns.

The architecture consists of multiple stacks of basic blocks, where 
each block contains fully connected layers that terminate in two 
branches: the backcast and forecast branches. The backcast branch re
constructs the input sequence, while the forecast branch generates 
future predictions. This dual-output mechanism enables the model to 
learn hierarchical pattern representations. Each subsequent block pro
cesses the residual error from the previous block’s backcast, creating an 
iterative refinement process.

The implementation utilizes double residual stacking, where each 
stack specializes in different aspects of the time series. The first stack 
typically captures trend components, while subsequent stacks learn 
seasonal and higher-frequency patterns. The model processes the tech
nical indicators and macroeconomic variables as additional input fea
tures, maintaining their temporal relationships. The architecture’s 
design allows for interpretable outputs, as each block’s contribution to 
the final forecast can be analyzed separately (Oreshkin et al., 2020).

3.5.9. N-HITS
Neural Hierarchical Interpolation for Time Series (N-HITS) repre

sents an enhancement of the N-BEATS architecture, specifically 
designed to incorporate interpretable time series components. The 
model introduces a hierarchical interpolation structure that explicitly 
models trend, seasonal, and irregular components of time series data. 
This architecture is particularly effective for financial time series due to 
its ability to capture multiple temporal resolutions and provide inter
pretable decompositions.

The implementation employs a specialized stack architecture where 
each stack is dedicated to modeling specific time series components. The 
trend stack utilizes polynomial interpolation to capture long-term pat
terns, while the seasonal stack implements periodic interpolation for 

cyclical patterns. The model incorporates additional stacks for capturing 
irregular components and short-term fluctuations. This hierarchical 
approach enables the model to process both low-frequency patterns 
(such as macroeconomic trends) and high-frequency components (such 
as daily price movements) simultaneously.

N-HITS extends the traditional N-BEATS framework by incorporating 
interpretable basis functions and maintaining explicit separation be
tween different temporal resolutions. The model processes the technical 
indicators and macroeconomic variables through specialized input 
layers, preserving their temporal relationships. The architecture’s 
interpretability is enhanced through component-wise analysis, where 
the contribution of each stack to the final prediction can be visualized 
and analyzed separately (Challu et al., 2023).

3.5.10. LSTM-GA and LSTM-SCSO
Table 5 illustrates the architectures of two different LSTM-based 

models: LSTM-GA and LSTM-SCSO. The LSTM-GA and LSTM-SCSO 
models are designed for a specific task where the exact number of 
LSTM layers and the number of nodes in each layer are determined by 
GA and SCSO. The model begins with an input layer consisting of 20 
nodes, allowing it to process sequences of a certain length and multiple 
features. Instead of specifying the number of LSTM layers and nodes 
directly, they are represented by variables x0, x1, x2, x3, x4, x5, and x6, 
which will be determined by the algorithm during the model optimi
zation process. The LSTM-GA and LSTM-SCSO architectures allow the 
metaheuristic algorithms to discover the optimal number of LSTM layers 
and nodes, providing a flexible and adaptive model for various data and 
tasks.

3.6. Justification for LSTM2D and LSTM3D usage

While LSTM2D and LSTM3D are typically associated with processing 
two-dimensional and three-dimensional data respectively, their appli
cation in stock price prediction offers several advantages: 

1. Multi-feature analysis: LSTM2D can process multiple features 
simultaneously, treating each feature as a separate dimension. This 
allows for a more comprehensive analysis of stock price movements 
concerning various indicators.

2. Temporal-spatial correlations: LSTM3D can capture both temporal 
and spatial correlations in the data. In stock price prediction, this can 
be useful for analyzing relationships between different stocks or 
market sectors over time.

3. Enhanced pattern recognition: The additional dimensions in 
LSTM2D and LSTM3D enable the models to recognize more complex 
patterns that may not be apparent in one-dimensional time series 
data.

4. Improved feature extraction: These models can automatically extract 
hierarchical features from the input data, potentially uncovering 
hidden relationships in stock price movements.

5. Handling of multi-scale temporal dynamics: LSTM2D and LSTM3D 
can capture both short-term and long-term dependencies in the data, 
which is crucial for stock price prediction where different time scales 
may influence price movements.

Table 5 
LSTM-GA and LSTM-SCSO architectures.

Layer Parameter

Input 20
LSTM x0

LSTM (x1) x2

LSTM (x3) x4

Dense x5

Dropout x6

Dense 1
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While the input data for stock price prediction is primarily time- 
series, it is reshaped to fit the 2D and 3D input requirements of these 
models. This reshaping allows us to leverage the additional capabilities 
of LSTM2D and LSTM3D in capturing complex patterns and relation
ships in the data.

3.7. Hyperparameter alternatives

Many existing studies employ machine learning methods with 
manual tuning and fixed parameters. This approach has significant 
disadvantages. Manual tuning requires researchers to have deep domain 
knowledge, understand dynamic market changes, and adjust parameters 
accordingly. This situation is difficult for beginners and non-experts, 
which limits the widespread use of the method. Manual tuning may 
lead to human bias, as researchers’ subjective decisions affect parameter 
selection, and the objectivity and universality of the model are affected. 
Hyperparameter optimization increases the success of models. There
fore, hyperparameter optimization has been applied in this study. This 
study presents a more flexible tuning strategy to increase the model’s 
adaptability and robustness (Feng et al., 2024).

Table 6 displays the alternative hyperparameters and their respec
tive options considered for model optimization:

Number of neurons: This hyperparameter governs the number of 
neurons (nodes) in the dense layers of the model. The alternatives range 
from 1 to 20, providing flexibility in choosing the size of the dense 
layers.

Layer exists or does not exist: This binary hyperparameter de
termines whether an additional dense layer is present in the model or 
not. The alternatives are represented by 0 (not exist) and 1 (exist), 
allowing for an investigation into the necessity of including extra dense 
layers.

Dropout rate: Dropout is a regularization technique that randomly 
drops out some neurons during training to prevent overfitting. The al
ternatives for the dropout rate are 0.3, 0.4, 0.5, 0.6, and 0.7, offering 
various levels of dropout intensity.

Optimizer algorithm: The optimizer is responsible for updating the 
model parameters during training to minimize the loss function. The 
alternatives for the optimizer algorithm include Adagrad, Adam, Ada
max, RMSprop, and SGD, providing a range of optimization techniques 
to choose from.

Learning rate: The learning rate determines the step size at which the 
optimizer adjusts the model parameters. It is a critical hyperparameter 
that affects the training process. The alternatives for the learning rate 
are 0.01, 0.001, 0.0001, 0.00001, and 0.000001, covering a broad 
spectrum of learning rates to find the most suitable value for efficient 
convergence.

Considering these alternative hyperparameters, model selection is 
performed using GA and SCSO to find the best combination of hyper
parameters that maximizes the model’s performance on the validation 
data.

3.8. Input data and feature extraction

The study incorporates both historical stock prices and key technical 
and macroeconomic indicators as input data for the predictive models. 
The technical indicators are calculated using historical price data to 

capture market trends and momentum. These include Simple Moving 
Averages (5-day, 10-day, 20-day, and 50-day) to identify trend di
rections, Relative Strength Index (14-day RSI) to measure momentum, 
Moving Average Convergence Divergence (12-day and 26-day moving 
averages with 9-day signal line) to identify trend changes, Volume 
Moving Average (20-day) to analyze trading volume patterns, and Rate 
of Change (10-day) to measure price momentum.

Several factors may enhance predicting accuracy individually, 
although their impact is limited. Augmenting the number of predictors 
from designated categories improves forecasting precision (Fu et al., 
2024). Therefore, macroeconomic indicators from Deutsche Bundes
bank are integrated to capture broader market conditions. These include 
German short-term interest rates (3-month rates), German inflation rates 
(Consumer Price Index), and German unemployment rates. These 
monthly indicators provide context for the overall economic environ
ment affecting stock prices.

The LSTM architecture effectively processes this diverse set of inputs 
due to its ability to capture long-term dependencies across multiple 
features. The model learns complex relationships between technical 
indicators, macroeconomic factors, and stock prices, identifying pat
terns that may not be apparent through traditional analysis. The archi
tecture’s capacity to handle non-linear relationships is particularly 
valuable given the complex interactions between different economic 
indicators and stock price movements.

The combination of technical and macroeconomic indicators with 
historical price data provides a more comprehensive view of market 
conditions. This multi-feature approach allows the model to consider 
both market-specific technical factors and broader economic conditions 
in making predictions (Feng et al., 2024; Fu et al., 2024). The LSTM’s 
adaptive feature extraction capabilities enable it to determine the rela
tive importance of different indicators under varying market conditions, 
potentially uncovering hidden relationships between these diverse in
puts. This enhanced input framework represents an improvement over 
approaches that rely solely on historical prices, as it incorporates 
established predictive factors from both technical and fundamental 
analysis. The integration of these additional features provides the model 
with a richer context for price prediction while maintaining the LSTM’s 
ability to automatically extract and learn from complex patterns in the 
data.

4. Results and discussion

4.1. Dataset

The DAX, also known as the Deutscher Aktienindex, has a notable 
historical background that commenced in 1988 with its introduction by 
the Frankfurt Stock Exchange. Its primary purpose is to assess the per
formance of Germany’s most prominent and highly liquid corporations. 
Over time, the DAX has emerged as an essential gauge for the German 
economy and a prominent indicator of European stock market trends. 
Notable achievements have punctuated the trajectory of its progression. 
Throughout its existence, the DAX has experienced a range of market 
fluctuations. Presently, the DAX remains a prominent participant in the 
realm of finance, garnering international recognition and exerting an 
impact on investor perception. The DAX, functioning as a price- 
weighted index, reflects the performance exhibited by its constituent 
companies. These companies are representative of diverse sectors within 
the German economy. The real-time performance of this indicator is 
closely monitored by investors, financial institutions, and policymakers 
due to its significance as a crucial economic indicator within a dynamic 
financial environment (Banke et al., 2022; Bühler & Kempf, 1995; 
Henne et al., 2009; Stapf & Werner, 2003). Historical prices of 30 stocks 
in the DAX index are obtained using Yahoo Finance. A total of 5 years of 
data is used. This data covers the period between 2018 and 2023. 
Forecasts are made based on the closing price for each stock.

The evaluation framework employs a rigorous rolling window 

Table 6 
Hyperparameter alternatives.

Hyperparameter Alternatives

Number of neurons 1, 2, 3, …, 18, 19, 20
Layer exist or not exist 0, 1
Dropout rate 0.3, 0.4, 0.5, 0.6, 0.7
Optimizer algorithm Adagrad, Adam, Adamax, RMSprop, SGD
Learning rate 0.01, 0.001, 0.0001, 0.00001, 0.000001
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approach with time-series cross-validation to ensure robust model 
assessment. A 20-day rolling window is utilized, where models are 
trained on a moving window of historical data and tested on subsequent 
periods. This approach better reflects real-world trading conditions and 
prevents look-ahead bias. The dataset is structured with an 80-20 split, 
where the final 20% is reserved for out-of-sample testing.

Time-series cross-validation is implemented through a forward- 
chaining methodology. The initial training period consists of the first 
80% of the data, with subsequent validation performed on the next 
available period. This process is repeated by moving the window for
ward, maintaining the temporal order of the data, and ensuring the 
validity of the forecasting framework.

The models’ performance is evaluated using out-of-sample R2 scores, 
which provide a more realistic assessment of predictive capability 
compared to in-sample measures. This metric is calculated exclusively 
on the test set data, offering a true measure of the models’ generalization 
ability. The rolling window approach, combined with time-series cross- 
validation and out-of-sample evaluation, provides a comprehensive 
framework for assessing the models’ practical forecasting capabilities.

4.2. Evaluation criteria

Regression evaluation criteria are employed to evaluate the efficacy 
of regression models, which are utilized to forecast continuous numer
ical outcomes. The following is a concise elucidation of each evaluation 
metric:

MSE is a metric used to evaluate the accuracy of a predictive model. 
It quantifies the average of the squared differences between the pre
dicted values and the actual values within a given dataset. The 
weighting of larger errors is more severe, resulting in a heightened 
sensitivity to outliers. Smaller MSE values are indicative of superior 
model performance, with a value of 0 representing the optimal outcome 
where predictions precisely align with the actual values.

The coefficient of determination, often denoted as out of sample R2, 
is a statistical measure used in regression analysis to assess how well a 
regression model fits the observed data. It provides a quantifiable 
indication of the proportion of the variability in the dependent variable 
that can be explained by the independent variables included in the 
model.

MAE is a metric used to measure the average absolute difference 
between predicted and actual values. The method under consideration 
exhibits reduced sensitivity to outliers in comparison to the MSE 
approach, as it does not involve squaring the errors. Similar to the RMSE 
and MSE, lower values of MAE are indicative of superior model 
performance.

MAPE is a metric used to determine the average percentage deviation 
between predicted and actual values. The statement as mentioned above 
denotes the measure of the discrepancy concerning the true values. 
MAPE is frequently employed as a metric to quantify the level of accu
racy in predictions, typically represented as a percentage value. Similar 
to other evaluation metrics, lower MAPE values are indicative of supe
rior model performance.

In the assessment of regression models, it is imperative to take into 
account various metrics in order to obtain a comprehensive compre
hension of their performance. The selection of the most suitable metric is 
contingent upon the particular context and demands of the problem at 
hand.

MSE, MAE, MAPE, out of sample R2 as evaluation criteria for this 
stock price prediction model is based on the following considerations: 

1. Comprehensive error assessment: MSE and MAE provide comple
mentary insights into prediction errors. MSE is sensitive to large 
errors, making it suitable for detecting significant deviations, while 
MAE offers a more intuitive measure of average error magnitude.

2. Relative performance measure: MAPE allows for comparison across 
different stocks by expressing errors as percentages, facilitating the 
interpretation of model performance across various price scales.

3. Explanatory power: out of sample R2 score indicates how well the 
model explains the variance in stock prices, offering insight into the 
model’s overall predictive capability.

4. Alignment with financial domain: These metrics are widely used and 
understood in financial forecasting, making the results comparable 
with existing literature and industry standards.

5. Data characteristics: Given the continuous nature of stock price data 
and its potential for outliers, this combination of metrics provides a 
balanced view of model performance, addressing both absolute and 
relative errors.

By using these diverse metrics, it is aimed to provide a comprehen
sive evaluation of the models’ performance, catering to different aspects 
of prediction accuracy relevant to stock market analysis.

4.3. Result and discussion

This study examines the performance of several algorithms, namely 
LSTM1D, LSTM2D, LSTM3D, ANN, LSTM-GA, Auto-ARIMA, GBT, 
DeepAR, N-BEATS, N-HITS, and optimized LSTM with SCSO (LSTM- 
SCSO), when applied to the DAX stock dataset spanning the period from 
2018 to 2023. Subsequently, the outcomes of these algorithms are 
meticulously examined and documented. The objective of this study is to 
ascertain the optimal algorithm in terms of both accuracy and efficiency 
for the prediction of stock prices. The evaluation criteria employed 
encompass MSE, MAE, MAPE, and out-of-sample R2 scores. The out
comes of the testing hold significant importance in the DAX market.

Upon analyzing Table 7, it is evident that the LSTM-SCSO algorithm 
consistently achieves the lowest MSE values across most of the stock 
tickers. This indicates that the LSTM-SCSO model outperforms the other 
algorithms in terms of MSE. LSTM-SCSO’s superior performance may be 
attributed to its ability to capture complex temporal dependencies and 
patterns in the data, making it more effective in predicting the contin
uous numerical outcomes of the stock tickers; however, while LSTM- 
SCSO appears to be the best algorithm based on the MSE values in this 
stock price dataset. LSTM-GA follows it, and it is the second-best 
algorithm.

Table 8 focuses on MAE comparison. Similar trends emerge with 
LSTM-SCSO consistently outperforming other methods for many stocks. 
It’s worth noting that while LSTM-based algorithms generally exhibit 
better predictive capabilities, certain stocks showcase varying algo
rithmic preferences, emphasizing the need for tailored algorithm se
lection. These tables collectively provide valuable insight into 
algorithmic performance across diverse stocks, aiding in informed 
decision-making for stock market prediction applications. LSTM-SCSO 
model performs the best result. It is the best algorithm for the stock 
market price prediction dataset for MAE criteria. LSTM-GA follows it.

Table 9 adds to the comprehensive analysis of algorithm perfor
mance by presenting MAPE comparison for the evaluated algorithms, 
including LSTM-SCSO, LSTM-GA, LSTM1, LSTM2, LSTM3, ANN, Auto- 
ARIMA, Gradient Boosted Trees, DeepAR, N-BEATS, N-HITS. The 
MAPE metric provides insights into the relative accuracy of the algo
rithms’ predictions, accounting for the percentage difference between 
predicted and actual values. Notably, LSTM-SCSO consistently exhibits 
the lowest MAPE values across various stock tickers, indicating their 
superior predictive accuracy in comparison to other algorithms. These 
findings reinforce the dominance of LSTM-SCSO in terms of prediction 
precision, underlining their suitability for stock market forecasting 
tasks. However, it’s important to acknowledge that each algorithm’s 
performance varies depending on the specific stock being analyzed, 
reinforcing the importance of tailored algorithm selection for optimal 
predictive outcomes. LSTM-SCSO model performs the best result. It is 
the best algorithm for the stock market price prediction dataset for 
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MAPE criteria. LSTM-GA follows it.
Table 10 introduces the comparison of the algorithms’ performance 

using the out-of-sample R2 score, a statistical measure indicating the 
proportion of variance in the dependent variable that the independent 

variables can explain. The out-of-sample R2 score ranges from -∞ to 1, 
where a higher value signifies a better fit of the model to the data. 
Analyzing the out-of-sample R2 scores for the evaluated algorithms, it’s 
evident that LSTM-SCSO consistently yields higher out-of-sample R2 

Table 7 
MSE comparison of the algorithms.

MSE

Ticker LSTM-SCO LSTM-GA LSTM-1D LSTM-2D LSTM-3D ANN ARIMA GBT DeepAR N-BEATS N-HITS

ALV.DE 28.153 33.940 40.889 75.945 60.564 180.404 181.139 170.487 57.809 61.349 102.957
HNR1.DE 11.496 25.027 58.304 68.592 64.213 79.311 81.664 109.320 33.953 67.176 54.859
P911.DE 17.138 24.181 77.915 68.731 65.140 73.136 41.453 82.536 80.978 80.944 48.528
FRE.DE 3.584 4.418 7.708 13.028 25.140 9.209 17.558 5.532 10.599 11.342 7.379
CON.DE 15.469 43.162 126.997 91.947 150.070 50.689 94.186 127.112 90.503 69.287 37.267
IFX.DE 0.998 1.573 4.224 3.815 4.073 6.818 10.139 4.479 2.305 4.284 2.174
DTE.DE 0.152 0.413 1.252 0.701 1.335 0.881 1.180 1.228 1.551 0.679 1.136
SIE.DE 17.474 21.591 54.184 60.717 53.725 90.505 62.933 36.446 46.254 52.248 33.548
DBK.DE 0.148 0.164 0.737 0.743 0.476 0.658 0.684 0.720 0.720 0.579 0.519
AIR.DE 11.944 11.816 34.946 29.694 35.986 42.398 41.804 52.111 25.019 33.955 21.700
HEI.DE 1.559 3.445 8.935 6.209 6.031 8.546 9.665 7.246 8.410 5.227 6.897
BAYN.DE 1.706 3.002 5.211 11.174 8.270 2.431 11.044 4.437 3.539 3.843 6.856
EOAN.DE 0.025 0.039 0.137 0.158 0.127 0.142 0.111 0.109 0.139 0.091 0.107
BMW.DE 5.664 7.497 23.560 37.369 12.516 64.019 84.630 20.092 20.961 32.458 8.119
RWE.DE 3.327 1.601 7.976 5.687 16.070 22.713 18.153 6.399 8.693 11.066 9.409
VOW3.DE 10.740 11.111 34.077 46.225 36.208 25.296 34.324 20.767 24.393 26.543 16.842
DTG.DE 0.556 1.188 3.612 5.101 5.698 3.988 6.299 3.059 2.942 2.670 3.506
VNA.DE 0.965 1.721 2.747 4.205 5.898 4.981 4.841 5.079 3.192 4.369 2.371
ENR.DE 2.592 2.171 4.952 9.269 16.868 3.052 6.448 5.058 4.801 3.371 3.337
SY1.DE 7.134 15.008 23.775 15.613 17.137 11.299 33.594 20.320 24.888 16.347 20.661
BEI.DE 1.698 2.266 9.245 4.422 8.551 12.230 15.724 5.143 5.133 8.270 10.567
ADS.DE 105.623 96.036 351.687 507.183 685.381 422.921 595.587 304.360 240.560 238.348 345.142
SHL.DE 1.487 2.073 3.777 3.951 5.093 19.002 6.888 6.383 3.966 6.003 4.066
ZAL.DE 4.159 6.783 33.780 27.177 27.307 64.283 30.625 31.258 18.031 14.090 20.660
DB1.DE 14.237 48.718 87.780 52.749 150.839 106.501 46.350 123.319 155.219 82.985 79.301
1COV.DE 1.214 1.642 4.725 5.629 4.270 43.520 8.312 5.768 4.497 7.456 3.256
BAS.DE 2.051 1.822 4.843 4.727 4.867 6.442 8.468 2.967 4.458 3.765 5.534
MTX.DE 21.331 26.126 82.327 74.533 132.341 126.326 87.832 92.936 97.357 144.997 54.152
MRK.DE 14.268 23.393 90.441 44.782 43.986 65.434 84.772 50.284 80.262 55.058 78.115

Table 8 
MAE comparison of the algorithms.

MAE

Ticker LSTM-SCO LSTM-GA LSTM-1D LSTM-2D LSTM-3D ANN ARIMA GBT DeepAR N-BEATS N-HITS

ALV.DE 4.377 4.768 5.170 7.140 6.504 11.970 11.245 11.790 6.264 6.544 8.322
HNR1.DE 2.847 4.155 6.182 6.925 6.858 7.216 7.790 8.954 5.026 6.846 5.865
P911.DE 1.924 2.271 4.083 3.852 3.746 3.963 2.917 4.212 4.182 4.170 3.228
FRE.DE 1.558 1.769 2.281 2.987 4.201 2.736 3.540 1.957 2.731 2.814 2.232
CON.DE 3.394 5.851 9.970 8.447 10.909 5.843 8.738 10.119 8.416 7.206 5.148
IFX.DE 0.783 0.957 1.609 1.511 1.608 2.220 2.535 1.678 1.195 1.632 1.134
DTE.DE 0.356 0.588 1.045 0.750 1.075 0.801 0.989 1.021 1.161 0.751 0.990
SIE.DE 3.374 3.817 5.890 6.573 6.227 7.825 6.592 4.914 5.681 6.008 4.659
DBK.DE 0.316 0.322 0.690 0.710 0.554 0.621 0.666 0.691 0.678 0.622 0.573
AIR.DE 2.974 2.849 5.358 4.604 5.261 5.466 5.359 6.175 4.295 4.941 3.872
HEI.DE 1.010 1.548 2.552 2.023 2.033 2.223 2.501 2.100 2.363 1.759 2.227
BAYN.DE 1.046 1.348 1.811 2.704 2.239 1.193 2.586 1.672 1.506 1.575 2.058
EOAN.DE 0.127 0.165 0.312 0.331 0.296 0.310 0.276 0.272 0.315 0.245 0.271
BMW.DE 2.028 2.415 4.228 5.640 2.866 6.482 8.425 4.058 3.951 5.132 2.396
RWE.DE 1.638 1.114 2.590 2.092 3.742 4.494 3.944 2.203 2.568 3.091 2.838
VOW3.DE 2.736 2.595 4.499 5.782 5.085 3.871 4.483 3.515 3.773 4.255 3.343
DTG.DE 0.611 0.866 1.532 1.861 2.012 1.573 2.019 1.420 1.382 1.339 1.484
VNA.DE 0.838 1.082 1.363 1.667 1.973 1.871 1.843 1.887 1.496 1.730 1.256
ENR.DE 1.360 1.219 1.812 2.548 3.548 1.419 2.047 1.859 1.829 1.488 1.462
SY1.DE 2.192 3.326 3.934 3.211 3.377 2.597 4.711 3.666 3.970 3.277 3.721
BEI.DE 1.075 1.273 2.523 1.697 2.502 2.909 3.343 1.864 1.870 2.412 2.727
ADS.DE 8.306 7.885 15.422 17.846 20.581 16.820 19.977 14.188 12.665 12.600 15.134
SHL.DE 0.997 1.167 1.507 1.592 1.852 3.416 2.053 2.011 1.583 2.080 1.506
ZAL.DE 1.713 2.142 5.015 4.276 4.324 6.137 4.611 4.678 3.458 3.021 3.701
DB1.DE 3.239 6.484 8.660 6.447 11.486 9.353 5.606 10.330 11.718 8.125 8.043
1COV.DE 0.875 1.048 1.727 1.828 1.651 5.206 2.330 1.940 1.724 2.117 1.406
BAS.DE 1.119 1.032 1.693 1.649 1.699 1.961 2.233 1.321 1.645 1.473 1.795
MTX.DE 3.912 4.311 7.669 7.254 9.874 9.065 7.884 8.197 8.340 10.156 6.190
MRK.DE 3.093 4.003 7.786 5.539 5.503 6.386 7.766 5.682 7.270 6.085 7.247
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scores across multiple stock tickers, indicating their superior ability to 
capture and explain the variance in stock price movements. These 
findings reiterate the prominence of LSTM-SCSO in capturing and 
explaining stock price fluctuations, reinforcing their suitability for 

robust and accurate stock market predictions. However, it’s essential to 
consider the context of each stock’s unique behavior, which can impact 
the performance of different algorithms. LSTM-SCSO model performs 
the best result. It is the best algorithm for the stock market price 

Table 9 
MAPE comparison of the algorithms.

MAPE

Ticker LSTM-SCO LSTM-GA LSTM-1D LSTM-2D LSTM-3D ANN ARIMA GBT DeepAR N-BEATS N-HITS

ALV.DE 0.024 0.027 0.029 0.040 0.037 0.069 0.063 0.067 0.035 0.037 0.047
HNR1.DE 0.018 0.026 0.039 0.044 0.044 0.046 0.050 0.057 0.033 0.044 0.037
P911.DE 0.020 0.023 0.042 0.040 0.039 0.041 0.030 0.043 0.043 0.043 0.033
FRE.DE 0.064 0.072 0.093 0.123 0.173 0.106 0.144 0.080 0.112 0.115 0.092
CON.DE 0.061 0.106 0.181 0.153 0.198 0.100 0.157 0.183 0.152 0.131 0.093
IFX.DE 0.028 0.035 0.058 0.055 0.058 0.080 0.091 0.061 0.043 0.059 0.041
DTE.DE 0.021 0.035 0.061 0.044 0.063 0.047 0.058 0.060 0.068 0.044 0.058
SIE.DE 0.030 0.034 0.053 0.059 0.056 0.068 0.059 0.044 0.050 0.054 0.042
DBK.DE 0.032 0.034 0.070 0.073 0.059 0.064 0.070 0.071 0.070 0.064 0.059
AIR.DE 0.028 0.028 0.051 0.044 0.051 0.053 0.052 0.059 0.041 0.047 0.038
HEI.DE 0.021 0.033 0.053 0.043 0.044 0.047 0.054 0.046 0.051 0.039 0.047
BAYN.DE 0.019 0.025 0.034 0.049 0.041 0.022 0.047 0.031 0.028 0.029 0.038
EOAN.DE 0.015 0.019 0.035 0.038 0.034 0.035 0.032 0.032 0.036 0.028 0.032
BMW.DE 0.030 0.035 0.062 0.082 0.042 0.096 0.122 0.059 0.057 0.074 0.035
RWE.DE 0.043 0.030 0.069 0.055 0.099 0.120 0.105 0.058 0.068 0.082 0.075
VOW3.DE 0.027 0.026 0.045 0.057 0.051 0.039 0.045 0.035 0.038 0.042 0.033
DTG.DE 0.025 0.036 0.064 0.078 0.085 0.065 0.084 0.059 0.058 0.055 0.062
VNA.DE 0.034 0.044 0.055 0.070 0.083 0.075 0.074 0.077 0.059 0.072 0.051
ENR.DE 0.095 0.086 0.128 0.180 0.249 0.098 0.143 0.131 0.128 0.105 0.102
SY1.DE 0.021 0.032 0.038 0.031 0.032 0.025 0.045 0.035 0.038 0.031 0.036
BEI.DE 0.011 0.013 0.026 0.018 0.026 0.030 0.034 0.020 0.020 0.025 0.028
ADS.DE 0.061 0.057 0.111 0.132 0.154 0.117 0.146 0.102 0.093 0.092 0.110
SHL.DE 0.021 0.024 0.031 0.033 0.038 0.071 0.043 0.042 0.033 0.042 0.032
ZAL.DE 0.059 0.075 0.182 0.153 0.157 0.199 0.159 0.166 0.120 0.100 0.126
DB1.DE 0.021 0.041 0.055 0.041 0.073 0.060 0.036 0.066 0.075 0.052 0.051
1COV.DE 0.024 0.028 0.046 0.051 0.046 0.147 0.062 0.052 0.044 0.059 0.039
BAS.DE 0.026 0.025 0.041 0.040 0.041 0.047 0.053 0.032 0.039 0.035 0.042
MTX.DE 0.021 0.023 0.041 0.039 0.053 0.049 0.043 0.044 0.045 0.055 0.034
MRK.DE 0.018 0.023 0.045 0.032 0.032 0.037 0.045 0.033 0.042 0.035 0.042

Table 10 
Out of sample R2 comparison of the algorithms.

Out-of-sample R2

Ticker LSTM-SCO LSTM-GA LSTM-1D LSTM-2D LSTM-3D ANN ARIMA GBT DeepAR N-BEATS N-HITS

ALV.DE 0.858 0.829 0.794 0.617 0.694 0.089 0.086 0.139 0.708 0.690 0.480
HNR1.DE 0.948 0.887 0.738 0.691 0.711 0.643 0.633 0.508 0.847 0.698 0.753
P911.DE 0.699 0.575 − 0.370 − 0.209 − 0.146 − 0.286 0.271 − 0.452 − 0.424 − 0.424 0.147
FRE.DE 0.810 0.766 0.592 0.310 − 0.331 0.513 0.071 0.707 0.439 0.400 0.609
CON.DE 0.845 0.568 − 0.270 0.080 − 0.501 0.493 0.058 − 0.272 0.095 0.307 0.627
IFX.DE 0.926 0.884 0.688 0.718 0.699 0.497 0.252 0.669 0.830 0.684 0.840
DTE.DE 0.899 0.726 0.167 0.534 0.112 0.414 0.215 0.183 − 0.031 0.548 0.244
SIE.DE 0.888 0.862 0.654 0.612 0.657 0.422 0.598 0.767 0.705 0.666 0.786
DBK.DE 0.921 0.912 0.606 0.603 0.746 0.649 0.635 0.615 0.615 0.690 0.723
AIR.DE 0.760 0.763 0.298 0.404 0.277 0.148 0.160 − 0.047 0.497 0.318 0.564
HEI.DE 0.937 0.862 0.641 0.751 0.758 0.657 0.612 0.709 0.662 0.790 0.723
BAYN.DE 0.932 0.881 0.793 0.556 0.671 0.903 0.561 0.824 0.859 0.847 0.727
EOAN.DE 0.974 0.961 0.860 0.839 0.870 0.856 0.887 0.889 0.859 0.907 0.891
BMW.DE 0.768 0.693 0.036 − 0.529 0.488 − 1.620 − 2.464 0.178 0.142 − 0.328 0.668
RWE.DE 0.326 0.676 − 0.615 − 0.151 − 2.253 − 3.598 − 2.675 − 0.295 − 0.760 − 1.240 − 0.905
VOW3.DE 0.885 0.881 0.636 0.506 0.613 0.730 0.633 0.778 0.739 0.716 0.820
DTG.DE 0.918 0.825 0.469 0.250 0.162 0.414 0.074 0.550 0.567 0.607 0.485
VNA.DE 0.968 0.943 0.909 0.861 0.805 0.836 0.840 0.832 0.895 0.856 0.922
ENR.DE 0.713 0.760 0.452 − 0.026 − 0.866 0.662 0.287 0.440 0.469 0.627 0.631
SY1.DE 0.671 0.309 − 0.095 0.281 0.211 0.480 − 0.547 0.064 − 0.146 0.247 0.048
BEI.DE 0.952 0.936 0.740 0.876 0.759 0.656 0.557 0.855 0.856 0.767 0.703
ADS.DE 0.932 0.938 0.774 0.674 0.559 0.728 0.617 0.804 0.845 0.847 0.778
SHL.DE 0.918 0.885 0.791 0.781 0.718 − 0.052 0.619 0.646 0.780 0.668 0.775
ZAL.DE 0.978 0.965 0.825 0.859 0.858 0.667 0.841 0.838 0.907 0.927 0.893
DB1.DE 0.750 0.146 − 0.539 0.075 − 1.645 − 0.868 0.187 − 1.162 − 1.722 − 0.455 − 0.391
1COV.DE 0.967 0.955 0.872 0.847 0.884 − 0.180 0.775 0.844 0.878 0.798 0.912
BAS.DE 0.935 0.942 0.846 0.850 0.845 0.795 0.731 0.906 0.858 0.880 0.824
MTX.DE 0.890 0.865 0.575 0.615 0.316 0.347 0.546 0.520 0.497 0.251 0.720
MRK.DE 0.808 0.685 − 0.217 0.397 0.408 0.119 − 0.141 0.323 − 0.080 0.259 − 0.051
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prediction dataset for out-of-sample R2 criteria. LSTM-GA follows it.
The provided tables, encompassing the MSE, MAE, MAPE, and out- 

of-sample R2 score comparisons of various algorithms across different 
stock tickers, offer a comprehensive perspective on the algorithms’ 
performances in predicting stock price movements. These evaluations 
shed light on the algorithms’ strengths and limitations, contributing to a 
broader understanding of their applicability in the complex and dy
namic domain of financial forecasting.

Upon examining the MSE, MAE, MAPE, and out-of-sample R2 score 
tables, it becomes evident that LSTM-SCSO outperforms other algo
rithms, yielding lower error values across most of the considered stock 
tickers. This suggests that these two algorithms are capable of making 
more accurate predictions, as they exhibit better alignment between 
predicted and actual stock prices.

In summary, analysis of the provided tables underscores the promi
nence of LSTM-SCSO as the most successful algorithm for predicting 
stock prices. Their ability to consistently achieve lower error metrics, 
higher accuracy, and better explanatory power highlights their potential 
for making more reliable and insightful stock market forecasts. How
ever, it’s important to acknowledge that algorithm performance can be 
influenced by various factors, including the specific characteristics of 
individual stocks, market conditions, and the quality of input data. 
Therefore, while LSTM-SCSO emerges as the top contender, a thorough 
understanding of its strengths and weaknesses in different contexts is 
crucial for making informed decisions in real-world financial 
applications.

The analysis of the DAX stock dataset from 2018 to 2023 using 
various algorithms (ANN, LSTM1D, LSTM2D, LSTM3D, LSTM-GA, Auto- 
ARIMA, GBT, DeepAR, N-BEATS, N-HITS and LSTM-SCSO) reveals 
consistent patterns across all evaluation metrics (MSE, MAE, MAPE, and 
out of sample R2 score).

The LSTM-SCSO algorithm consistently outperforms other methods 
across most stock tickers, demonstrating superior predictive accuracy 
and explanatory power. This performance is evident in: 

1. Lower error rates: LSTM-SCSO consistently achieves the lowest MSE, 
MAE, and MAPE values, indicating more accurate predictions with 
smaller deviations from actual stock prices.

2. Higher explanatory power: The consistently higher out-of-sample R2 
scores for LSTM-SCSO suggest that this model captures a larger 
proportion of the variance in stock price movements.

The superior performance of LSTM-SCSO can be attributed to. 

1. Effective temporal dependency capture: The LSTM architecture ex
cels at learning long-term dependencies in time series data.

2. Optimized hyperparameters: The SCSO algorithm likely finds a more 
optimal set of hyperparameters, enhancing the LSTM’s performance.

3. Adaptive learning: The combination of LSTM and SCSO may allow 
the model to adapt better to the complex, non-linear nature of stock 
price movements.

While LSTM-SCSO shows the best overall performance, it’s impor
tant to note that the second-best performer is typically LSTM-GA, 
highlighting the effectiveness of evolutionary optimization techniques 
in this context.

These results underscore the potential of hybrid models that combine 
deep learning architectures with advanced optimization algorithms for 
stock price prediction. However, it’s crucial to consider that perfor
mance may vary depending on specific stock characteristics and market 
conditions.

4.4. Model confidence set

4.4.1. MSE
The Model Confidence Set (MCS) procedure was implemented to 

statistically evaluate and rank the performance of all models. The test 
was conducted with 5000 bootstrap replications and a significance level 
of α = 0.05. The elimination process began with all 11 models and 
proceeded iteratively based on mean MSE values. The models were 
eliminated in the following order: LSTM-3D (mean MSE: 56.83), ARIMA 
(56.08), ANN (53.35), GBT (44.99), LSTM-2D (44.14), LSTM-1D 
(41.06), DeepAR (36.59), N-BEATS (36.17), N-HITS (34.10), and 
LSTM-GA (14.55). The LSTM-SCSO model emerged as the sole superior 
model in the final set, with a mean MSE of 10.58 across all stocks. The 
sequential elimination pattern reveals a clear hierarchy in model per
formance, with traditional models being eliminated in earlier iterations, 
while more sophisticated hybrid approaches demonstrated greater pre
dictive accuracy. The LSTM-SCSO’s survival as the only model in the 
final confidence set provides strong statistical evidence for its superior 
predictive capabilities compared to all other tested models. Table 11
shows the model confidence set elimination process for MSE.

Table 12 shows the final model confidence set statistics for MSE.

4.4.2. MAE
The Model Confidence Set (MCS) procedure was applied to evaluate 

the MAE performance of all models with 5000 bootstrap replications and 
α = 0.05 significance level. The elimination process started with 11 
models and proceeded iteratively based on mean MAE values. The 
models were eliminated in the following sequence: ARIMA (mean MAE: 
4.79), ANN (4.69), LSTM-3D (4.61), GBT (4.29), LSTM-2D (4.12), LSTM- 
1D (4.10), N-BEATS (3.91), DeepAR (3.90), N-HITS (3.61), and LSTM- 
GA (2.50). The LSTM-SCSO model emerged as the sole superior model 
with a mean MAE of 2.06 across all stocks. The sequential elimination 
pattern demonstrates a clear hierarchy in predictive accuracy, with 
traditional models being eliminated earlier, while the LSTM-SCSO 
maintained consistently lower error rates. The survival of LSTM-SCSO 
as the only model in the final confidence set provides robust statistical 
evidence of its superior predictive capabilities in terms of absolute error 
measures. Table 13 shows the model confidence set elimination process 
for MAE.

Table 14 shows the final model confidence set statistics for MAE.

4.4.3. MAPE
The Model Confidence Set procedure was implemented to evaluate 

model performance using MAPE values across 11 competing models. 
The analysis was conducted with 5000 bootstrap replications at α = 0.05 
significance level. The elimination process revealed a clear hierarchy in 
model performance. The LSTM-3D model was eliminated first with a 
mean MAPE of 0.0744, followed by ARIMA (0.0740), ANN (0.0708), 
LSTM-2D (0.0654), GBT (0.0636), LSTM-1D (0.0634), DeepAR 
(0.0593), N-BEATS (0.0583), N-HITS (0.0536), and LSTM-GA (0.0378). 
The LSTM-SCSO model emerged as the sole superior model with a mean 
MAPE of 0.0317, demonstrating significantly better predictive accuracy. 
The superior model’s performance is characterized by low variability 
(standard deviation: 0.0189) and consistent accuracy across different 
stocks, with MAPE values ranging from 0.011 to 0.095. Table 15 shows 

Table 11 
Model confidence set elimination process (MSE).

Iteration Eliminated 
Model

Mean 
MSE

Models 
Remaining

Elimination 
Order

1 LSTM-3D 56.834 10 1st
2 ARIMA 56.083 9 2nd
3 ANN 53.350 8 3rd
4 GBT 44.998 7 4th
5 LSTM-2D 44.141 6 5th
6 LSTM-1D 41.060 5 6th
7 DeepAR 36.591 4 7th
8 N-BEATS 36.166 3 8th
9 N-HITS 34.102 2 9th
10 LSTM-GA 14.549 1 10th
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the model confidence set elimination process for MAPE.
Table 16 shows the final model confidence set statistics for MAPE.

4.4.4. Out of sample R2
The Model Confidence Set procedure was implemented to evaluate 

model performance using out-of-sample R2 values across 11 competing 
models. The analysis was conducted with 5000 bootstrap replications at 
α = 0.05 significance level. The elimination process revealed a clear 
hierarchy in model performance. ARIMA was eliminated first with a 
mean R2 of 0.2041, followed by ANN (0.2108), LSTM-3D (0.2786), GBT 
(0.4262), DeepAR (0.4271), LSTM-1D (0.4362), N-BEATS (0.4672), 
LSTM-2D (0.4714), N-HITS (0.5499), and LSTM-GA (0.7890). The 
LSTM-SCSO model emerged as the sole superior model with a mean R2 
of 0.8543, demonstrating significantly better explanatory power. The 
superior model’s performance is characterized by strong consistency 
(standard deviation: 0.1350) and high predictive power across different 
stocks, with R2 values ranging from 0.326 to 0.978. Table 17 shows the 
model confidence set elimination process for out-of-sample R2.

Table 18 shows the final model confidence set statistics for out-of- 
sample R2.

5. Economic implications and practical applications

The economic value of the LSTM-SCSO model was evaluated through 
a comprehensive portfolio analysis comparing its performance against 
the DAX index. A trading strategy was implemented using the LSTM- 
SCSO predictions for the test period, with portfolio rebalancing based 
on the model’s forecasts. The results demonstrate significant economic 
implications for practical applications.

The LSTM-SCSO portfolio achieved an annualized return of 66.25%, 
substantially outperforming the DAX index’s return of 47.45%. This 
superior return performance indicates the model’s ability to identify 
profitable trading opportunities. The enhanced return was accompanied 
by higher annualized volatility of 15.68% compared to the DAX index’s 
10.94%, reflecting the more active trading approach based on model 
predictions.

Risk-adjusted performance metrics provide additional insights into 
the economic value of the LSTM-SCSO model. The portfolio achieved a 
Sharpe ratio of 2.9091, slightly lower than the DAX index’s 3.0714, 
suggesting comparable risk-adjusted returns. The maximum drawdown 
for the LSTM-SCSO portfolio was − 7.79%, moderately higher than the 
DAX index’s − 5.00%, indicating slightly increased downside risk.

These results hold several practical implications for investment ap
plications. The model demonstrates its capability to generate excess 
returns through active trading signals, though with increased volatility. 
The comparable Sharpe ratios suggest that the additional returns 
adequately compensate for the increased risk. The moderate maximum 
drawdown indicates acceptable risk control despite the active trading 
approach.

These findings validate the economic value of the LSTM-SCSO model 
beyond mere predictive accuracy, demonstrating its potential utility in 

Table 12 
Final model confidence set statistics (MSE).

Statistic LSTM-SCO (Superior Model)

Mean MSE 10.582
Standard Deviation 19.767
Minimum MSE 0.025
25th Percentile 1.487
Median MSE 3.584
75th Percentile 14.237
Maximum MSE 105.623
Number of Stocks 29

Table 13 
Model confidence set elimination process (MAE).

Iteration Eliminated 
Model

Mean 
MAE

Models 
Remaining

Elimination 
Order

1 ARIMA 4.793 10 1st
2 ANN 4.688 9 2nd
3 LSTM-3D 4.606 8 3rd
4 GBT 4.289 7 4th
5 LSTM-2D 4.120 6 5th
6 LSTM-1D 4.100 5 6th
7 N-BEATS 3.914 4 7th
8 DeepAR 3.898 3 8th
9 N-HITS 3.615 2 9th
10 LSTM-GA 2.496 1 10th

Table 14 
Final model confidence set statistics (MAE).

Statistic LSTM-SCO (Superior Model)

Mean MAE 2.063
Standard Deviation 1.671
Minimum MAE 0.127
25th Percentile 0.997
Median MAE 1.638
75th Percentile 2.974
Maximum MAE 8.306
Number of Stocks 29

Table 15 
Model confidence set elimination process (MAPE).

Iteration Eliminated 
Model

Mean 
MAPE

Models 
Remaining

Elimination 
Order

1 LSTM-3D 0.0744 10 1st
2 ARIMA 0.0740 9 2nd
3 ANN 0.0708 8 3rd
4 LSTM-2D 0.0654 7 4th
5 GBT 0.0636 6 5th
6 LSTM-1D 0.0634 5 6th
7 DeepAR 0.0593 4 7th
8 N-BEATS 0.0583 3 8th
9 N-HITS 0.0536 2 9th
10 LSTM-GA 0.0378 1 10th

Table 16 
Final model confidence set statistics (MAPE).

Statistic LSTM-SCO (Superior Model)

Mean MAPE 0.0317
Standard Deviation 0.0189
Minimum MAPE 0.0110
25th Percentile 0.0210
Median MAPE 0.0250
75th Percentile 0.0320
Maximum MAPE 0.0950
Number of Stocks 29

Table 17 
Model Confidence Set Elimination Process (Out of sample R2).

Iteration Eliminated 
Model

Mean 
R2

Models 
Remaining

Elimination 
Order

1 ARIMA 0.2041 10 1st
2 ANN 0.2108 9 2nd
3 LSTM-3D 0.2786 8 3rd
4 GBT 0.4262 7 4th
5 DeepAR 0.4271 6 5th
6 LSTM-1D 0.4362 5 6th
7 N-BEATS 0.4672 4 7th
8 LSTM-2D 0.4714 3 8th
9 N-HITS 0.5499 2 9th
10 LSTM-GA 0.7890 1 10th
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real-world trading applications. The model’s ability to generate sub
stantial excess returns while maintaining reasonable risk metrics sug
gests its viability as a practical tool for investment management.

The results should be interpreted within the context of the test period 
conditions. Further research could explore the strategy’s performance 
across different market regimes and its scalability to larger portfolios. 
Additionally, the integration of position sizing and risk management 
overlays could potentially enhance the risk-adjusted performance met
rics. Table 19 shows the comparison of the LSTM-SCSO and DAX index 
portfolios.

6. Conclusion

In this study, the realm of stock price prediction has been delved into 
by leveraging various artificial intelligence algorithms, with a particular 
focus on the novel LSTM-SCSO approach. The objective was to enhance 
the accuracy of predictions and provide valuable insights for traders and 
investors seeking to navigate the complexities of the stock market.

A comprehensive review of the literature reveals a rich landscape of 
approaches to stock price prediction, ranging from traditional time se
ries methods to advanced deep learning techniques. It has been observed 
that the field has seen significant advancements in recent years, with 
increasingly sophisticated models being explored that combine multiple 
techniques and data sources to improve prediction accuracy.

The application of SCSO to optimize the LSTM model introduced a 
novel and promising approach to refining the predictive capabilities of 
the algorithm. This aligns with the broader trend in the field towards 
hybrid and ensemble models, which have shown superior performance 
compared to single-algorithm approaches. The analysis of the DAX stock 
dataset from 2018 to 2023 using various algorithms (LSTM1D, LSTM2D, 
LSTM3D, ANN, LSTM-GA, Auto-ARIMA, GBT, DeepAR, N-BEATS, N- 
HITS, and LSTM-SCSO) revealed noteworthy patterns in algorithm 
performance across multiple metrics, such as MSE, MAE, MAPE, and out 
of sample R2 scores.

Among the considered algorithms, LSTM-SCSO emerged as the most 
successful in consistently achieving superior results. Its ability to 
outperform other algorithms in terms of accuracy, error reduction, and 
explanatory power underscores its potential as a robust tool for stock 
price prediction. This aligns with findings from other researchers who 
have reported success with optimized LSTM models and hybrid 
approaches.

The Model Confidence Set analysis, conducted with 5000 bootstrap 
replications at α = 0.05 significance level, provided robust statistical 
validation of LSTM-SCSO’s superior performance. Through sequential 
elimination across all evaluation metrics (MSE, MAE, MAPE, out-of- 
sample R2), LSTM-SCSO emerged as the sole superior model. For MSE, 
the model achieved a mean of 10.582 compared to the next best 
performer, LSTM-GA, at 14.549. Similar patterns were observed in MAE 
(2.063 vs 2.496) and MAPE (0.0317 vs 0.0378). The out-of-sample R2 
analysis demonstrated LSTM-SCSO’s exceptional explanatory power 
with a mean of 0.8543, significantly outperforming other models. This 
comprehensive statistical evaluation establishes LSTM-SCSO’s predic
tive superiority with high confidence.

The economic value of LSTM-SCSO was validated through portfolio 

analysis against the DAX index. The LSTM–SCSO–based portfolio ach
ieved an annualized return of 66.25%, substantially outperforming the 
DAX index’s 47.45%. While this enhanced return was accompanied by 
higher volatility (15.68% vs 10.94%), the risk-adjusted performance 
remained strong with a Sharpe ratio of 2.9091, comparable to the DAX 
index’s 3.0714. The maximum drawdown was maintained at − 7.79%, 
indicating effective risk management despite the active trading 
approach. These results demonstrate that LSTM-SCSO’s superior pre
dictive accuracy translates into meaningful economic value, though 
users should remain cognizant of the increased volatility inherent in 
model-driven trading strategies.

The future of stock price prediction appears promising with the 
continued advancement of hybrid AI models like LSTM-SCSO. The 
demonstrated success of this approach, both in statistical accuracy and 
economic value generation, opens new avenues for further research and 
practical applications. The integration of additional data sources, 
enhanced optimization techniques, and more sophisticated risk man
agement frameworks could further improve the model’s capabilities. As 
computational power increases and machine learning techniques 
evolve, the potential for more precise and reliable stock market pre
dictions grows. This research establishes a strong foundation for future 
developments in financial forecasting, offering hope for more stable and 
profitable investment strategies. The LSTM-SCSO model represents a 
significant step forward in bridging the gap between academic research 
and practical trading applications, suggesting a future where AI-driven 
investment decisions become increasingly reliable and profitable while 
maintaining appropriate risk controls.

Data availability and access

The data is collected from Yahoo Finance (https://finance.yahoo. 
com). The data is open and accessible at Yahoo Finance.
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Gpt-4o and Grammarly were used for grammar checking in the 
article.
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