
Received 4 April 2024, accepted 16 May 2024, date of publication 23 May 2024, date of current version 31 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3404553

Enhancement of Video Anomaly Detection
Performance Using Transfer Learning
and Fine-Tuning
ESMA DİLEK AND MURAT DENER
Department of Information Security Engineering, Graduate School of Natural and Applied Sciences, Gazi University, 06560 Ankara, Turkey

Corresponding author: Murat Dener (muratdener@gazi.edu.tr)

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant Number 123E065.

ABSTRACT The use of surveillance cameras is a common solution that addresses the need to provide
security and manage urban traffic that arises due to the increasing population in cities. As the number of
surveillance cameras rises, video streams that create big data are recorded. The analysis of video streams
collected from those traffic surveillance cameras and the automatic detection of unusual, suspicious events,
as well as a range of harmful activities, have become crucial because it is impossible to observe, analyze,
and comprehend the contents of these movies using human labor. Recent studies have shown that deep
learning (DL)-based artificial intelligence (AI) techniques, particularly machine learning (ML) systems,
are used in video anomaly detection (VAD) studies. In this study, an efficient frame-level VAD method
is proposed based on transfer learning (TL) and fine-tuning (FT) approach, and anomalies were detected
using 20 popular convolutional neural network (CNN)-based DL models where variants of VGG, Xception,
MobileNet, Inception, EfficientNet, ResNet, DenseNet, NASNet, and ConvNeXt base models were trained
via the TL and FT approaches. The proposed approach was tested using the CUHK Avenue, UCSD Ped1,
and UCSD Ped2 datasets, and the performances of the models were measured via area under curve (AUC),
accuracy, precision, recall, and F1-score metrics. The highest AUC scores measured were 100%, 100%, and
98.41% for the UCSD Ped1, UCSD Ped2, and CUHK Avenue datasets, respectively. Compared to existing
techniques in the literature, experimental results show that the suggested method offers state-of-the-art VAD
performance.

INDEX TERMS CUHK avenue, deep learning, fine-tuning, transfer learning, UCSD Ped1, UCSD Ped2,
video anomaly detection.

I. INTRODUCTION
The use of traffic cameras in intelligent transportation appli-
cations is becoming more common as information and
communication technologies advance for the effective oper-
ation of transportation infrastructures. In particular, cameras
are used to monitor the traffic flows 24/7 in road transporta-
tion networks to detect incidents that put traffic safety at
risk and to take the necessary actions. The instantaneous
evaluation of information, getting updates, and taking nec-
essary actions in intercity and urban road traffic observation
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systems are no longer efficient via traditional video surveil-
lance methods that are based on human-eye tracking due to
the large amount of stream data. Therefore, there is a need
to develop innovative methods using technologies that can
automatically detect unusual and suspicious situations that
pose a risk to traffic safety from live video streams, such as
artificial intelligence (AI), rather than manual detection by
traffic operators.

Currently, intelligent systems using computer vision (CV)
methods are used for the monitoring of traffic flow and
automatic detection of anomalies occurring across road net-
works. The ability of these systems to make evaluations using
sequential video images reduces the errors that occur during
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FIGURE 1. Examples of anomaly scenes a, b. Object Throwing Man (CUHK
Avenue Dataset) c. Stroller (UCSD Ped1 Dataset) d. Person walking on
grass (UCSD Ped1 Dataset).

human-eye analysis and increases the detection accuracy.
These schemes, which use AI techniques, allow the establish-
ment of highly successful warning systems for traffic control
center operators [1].

In the context of anomaly detection, it is observed that
the surveillance cameras are categorized to detect issues
such as abnormal human movements, crowds, vehicle traffic,
unusual objects, and unusual interactions between people and
objects [2]. Some anomalies encountered in the surveillance
cameras are shown in Figure 1.
Previously, anomaly detection in videos was carried out

manually by utilizing handcrafted and conventional image
processing techniques, but now, powerful machine learning
(ML) methods are used. Deep learning (DL)-based archi-
tectures, such as convolutional neural network (CNN), deep
neural network (DNN), convolutional 3D (Conv3D), gener-
ative adversarial network (GAN), long short-term memory
(LSTM), and autoencoders (AEs), are widely used in video
anomaly detection (VAD) studies in the literature thanks to
the developments in ML techniques [2], [3].

After reviewing the literature studies, a frame-level VAD
method, including transfer learning (TL) and fine-tuning (FT)
approaches, which have recently gained popularity in VAD
applications, was developed in this study. The following are
this article’s primary contributions:
1) This study explores the effectiveness of the use of Keras

applications as base models in VAD, where 20 popular
DL models with pre-trained weights were investigated.

2) Feature extracting capabilities of Keras applications that
have pre-trained weights were utilized, which yielded
promising detection rates with TL and FT approaches
for real-time VAD applications.

3) This study proposes a supervised learning–based VAD
approach that presents state-of-the-art (SOTA) frame-
level VAD performance for the UCSD Ped1 [3], UCSD
Ped2 [3], and CUHK Avenue [4] public datasets.

4) To the best of our knowledge, this is the first study in
the literature that adopts the TL and FT approaches for
VAD and explores the effectiveness of various Keras
applications using public VAD datasets.

The following sections make up the remaining parts of this
study. First, the related studies in the literature are presented
in Section II. Then, in Section III, the materials and methods

used in VAD studies, datasets, and data pre-processing steps
utilized in the proposed method are explored. Section IV
provides the proposed VAD algorithm, and the experiment
results are provided in Section V. The advantages, limita-
tions, and challenges of pre-trained DL models for VAD
are discussed in Section VI. Finally, difficulties of the VAD
system, the conclusions, and future studies are presented in
Section VII.

II. RELATED WORKS
This section provides an overview of various AI-based meth-
ods for detecting anomalies in video cameras. VAD studies in
the literature and the comparison of frame-level performances
of SOTA VAD methods are given in the following sections.

A. VAD WORKS IN THE LITERATURE
Due to researchers’ interest in DL methods, they started to
apply them for VAD. DL-based methods have enabled high
performance to be obtained for the detection of abnormalities
from video streams under harsh environmental conditions [5],
[6], [7], [8], [9].

A convolutional LSTM (ConvLSTM) network architec-
ture designed as an encoder–decoder model was developed
by authors of [10] for anomaly detection via prediction of
subsequent frames and reconstruction. This architecture was
demonstrated to be a promising technique for VAD in [11].
The ConvLSTM network was fed with input video frames
for feature extraction, followed by a deconvolution step in
which input frames were reconstructed. In [12] and [13],
authors utilized an AE architecture with layered ConvLSTM
networks to extract features from video sequence data.

A CNN and LSTM–based network was adopted in [5]
for the detection of anomalies in the UCSD [3] and Sub-
way [14] datasets. In a comparable network suggested by
the authors in [15], a Conv3D with LSTM was employed
for feature extraction from videos. Assuming they included
abnormalities in the videos, these extracted features were then
employed to look for anomalies. The AE with support vector
machine was used by [16] to evaluate the performance on
the UCSD [3] and CUHK Avenue [4] datasets. AEs with
ConvLSTM were employed in [17], and the performance
evaluation was made in the UCSD [3], Subway [14], and
CUHK Avenue [4] datasets.

The stacked recurrent neural network (RNN) framework
was used in the study conducted by the authors of [11]. In [6],
the authors proposed the temporally coherent sparse coding
(TSC) approach, where the stacked RNN was used to map
similar neighboring squares to the reconstruction coefficient.
TSC has been proposed as an efficient technique to detect
anomalies in [3], [4], and [14] datasets.

In [18], an interesting usage of GAN was proposed for
the detection of anomalies, and the proposed model’s perfor-
mance was evaluated using the [3] and [19] datasets.

A summary of anomaly detection methods in videos was
presented in [20] by classifying the methods developed
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within 2015–2018 according to the network structures and the
datasets used. It was observed that DNNs with learning for
hierarchical feature representation were much more efficient
than handcrafted feature extraction methods employed in
conventional architectures [21].

In the supervised learning–based method proposed in [22],
a GAN-trained feature extraction model, which is effective
even when there is not enough amount of anomaly data, and
a TL method for VAD were used together. In this research,
a hybrid DL-based approach, which has recently gained pop-
ularity in VAD applications, was adopted.

Transformers, which provide successful results in model-
ing sequence data in current studies, were applied for VAD
in [23]. In the predictive anomaly detection method, where
U-Net and Video Vision Transformer (ViViT) were com-
bined, the detection performance was noticed to improve with
the addition of the transformer module. A recent review of
VAD approaches based onDLmethods was presented in [24],
and it was observed that GAN and adversarial AE-based
methods achieve higher detection rates.

A thorough analysis of the latest approaches in the field of
anomaly detection in the literature was presented by authors
of [25]. In this research, computational models, datasets, per-
formance metrics, and experimental results used in anomaly
analysis in images and videos were discussed from a broad
perspective. Similarly, in [26], the authors examined ML
and DL methods in the literature for anomaly detection in
video surveillance cameras; they argued about the advan-
tages and disadvantages of the proposed methods, discussed
the difficulties encountered, and provided popular datasets.
In another study [27], the authors analyzed DL approaches,
the architectural models used, datasets, performance metrics,
and research challenges in VAD applications.

B. COMPARISON OF THE FRAME-LEVEL PERFORMANCES
OF SOTA VAD METHODS
In VAD applications, if the anomaly map of a frame includes
a pixel containing at least one anomaly, it is considered an
anomaly detection at the frame level according to the evalua-
tion approach specified in [28].
Several methods developed in the literature for VAD using

the CUHK Avenue, UCSD Ped1, and UCSD Ped2 datasets
were extensively investigated and are listed in Table 1.
Area under curve (AUC) metric, which is widely used for
performance evaluation at the frame level, is presented as
percentages. As can be observed from Table 1, methods
based on hybrid DL approaches were recently developed
by researchers to obtain optimal results in VAD procedures.
In addition, it is observed that the success of detection
rates is increased with the use of TL and transformer
modules.

III. MATERIAL AND METHODS
In the early stages of CV studies until the late 2000s,
researchers benefited greatly from conventional image

TABLE 1. Comparison of the frame-level performance of SOTA
methods (%).
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TABLE 1. (Continued.) Comparison of the frame-level performance of
SOTA methods (%).

FIGURE 2. Classification of VAD methods.

processing techniques using different handcrafted spatio-
temporal features. However, in recent studies, more advanced
techniques using DL methods have begun to be used for the
detection of anomalies in video streams. The general block
diagram proposed by [2] for anomaly detection is shown in
Figure 2, where the raw video images that are subjected to
data pre-processing are first collected by the cameras and then
put through a feature extraction process. The collected data
then pass through a modeling technique, where a learning
method models the behaviors and determines whether they
are normal or abnormal.

A. VAD METHODS
VAD methods have been developed for more than a decade
to automatically detect anomalies in videos, and they have
been thoroughly examined in [2], where VAD techniques
are classified as (i) learning-based and (ii) modeling-based,
as shown in Figure 3. VAD methods are briefly examined in
the following sections.

FIGURE 3. Block diagram of VAD.

1) LEARNING-BASED
Learning-based algorithms use labeled and unlabeled training
data to learn normal conditions or anomalies. Based on the
data and approach used, learning-based methods for VAD
are categorized as (i) supervised learning, (ii) unsupervised
learning, (iii) semi-supervised learning [2], and (iv) active
learning [57].

In supervised learning, labeled datasets are used dur-
ing the training of the algorithm to predict or classify the
results. In this sort of learning, training data are processed to
construct various class formulations, such as one-class, two-
class, or multi-class output values are produced for various
categories.

The grouping concept is the foundation for unsupervised
learning and association of data in an unlabeled dataset or
discovering patterns in events that occur frequently in the
data. Both the normal and abnormal training data samples
in this method lack labels. The majority of the samples in
the dataset are likely to be typical occurrences that happen
regularly, while events that are encountered infrequently are
categorized as anomalies.

When just a few labeled training datasets are available,
the semi-supervised learning strategy, which sits between
supervised learning and unsupervised learning, is favored.
A small part of labeled data and a large amount of unlabeled
data are combined during the training process.

The anomaly detection model in unsupervised or
semi-supervised VAD is trained offline using normal training
samples, and the model is not updated when fresh data come
in. This sometimes results in video representations that are
inefficient. In active learning–based VAD techniques, people
(or domain experts) are involved in the online framework
while labeling ambiguous situations or data samples.

2) MODELING-BASED
Modeling-based VAD methods in the literature are sum-
marized below, as traditional handcrafted methods are now
replaced by DNNs.
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In statistical-based approaches, model parameters are
learned during training to predict anomalies, and the distribu-
tion of normal event data is modeled. Thus, according to the
probability model, a higher probability is expected for normal
events, while a lower probability outcome is anticipated for
anomalies.

Anomalies are discovered using proximity-based VAD
approaches by calculating the distance between the object and
its surroundings.

In classification-based anomaly detection approaches,
anomalies are distinguished by determining the separation
margin.

Reconstruction-based methods rely on predicting anoma-
lies based on the reconstruction error. In this approach,
where normal samples can be accurately reconstructed using
a limited set of basic functions, anomalies have greater
reconstruction loss.

In predictive techniques, the probability of the desired
outcome is predicted in line with the significance of input
variables in the dataset, utilizing known outcomeswhile train-
ing the model. Several other techniques, such as fuzzy theory
estimation [58], adaptive sparsity model [59], sparsity-based
background subtraction method [60], use of high-frequency
correlation sensors [61], particle filtering [62], and redun-
dancy removal [63], are utilized in the literature to spot
irregularities in the flow of traffic, such as accidents, danger-
ous driving behavior, street crimes, and traffic violations.

B. TECHNOLOGIES USED IN THE PROPOSED METHOD
A VAD method that is based on supervised learning using
the TL and FT approaches is proposed in this study, where
several Keras applications were used as base models. TL uses
features that are learned on one problem and takes advantage
of these learned features on a new, similar problem. Basically,
TL consists of four basic steps and an optional step: (i) getting
layers from a pre-trained model (base model), (ii) freezing
the layers of the base model to prevent losing the previously
learned information that they contain, (iii) adding some new,
trainable layers on top of the frozen layers so that previously
learned features will be turned into predictions in the new
dataset, and (iv) training the new layers using the new dataset.
FT is the last step that comprises unfreezing the whole model
or some parts of it and training it again on the new dataset
using a considerably low learning rate. This FT step aims to
enhance the general performance of the model and achieve
more success.

In the following sections, brief information about the Keras
applications, DL architectures, programming language, tech-
nologies, and libraries used in this study is presented.

1) KERAS APPLICATIONS USED IN TL
Keras applications are DL models that come with pre-
trained weights. They are made available for (i) prediction,
(ii) feature extraction, and (iii) FT. These pre-trained models
consist of architecture and weights. A list of selected Keras

TABLE 2. List of Keras applications used as base models.

applications within the scope of this study is given in Table 2
and summarized in the following sections.

a) VGG16 and VGG19: VGG16 is a CNN model that is
employed for image classification. It has 16 trainable
layers and regarded as one of the most successful archi-
tectures employed for vision tasks. It has three fully
connected layers and 13 convolutional layers. VGG19 is
a variant of VGG model that consists of 19 layers. It has
16 convolution layers, three fully connected layers, five
MaxPool layers, and one SoftMax layer.

b) Xception:Xception is a deep CNN architecture that was
developed by Google researchers and has Depthwise
Separable Convolutions (DSCs). DSCs are regarded as
alternatives to classical convolutions, which are much
more efficient in terms of computation time.

c) MobileNetV3:Through the use of the NetAdapt algorithm
and hardware-aware network architecture search,
MobileNetV3 is a CNN architecture that is tailored to the
central processing units (CPUs) of mobile phones. It is
the next generation of the MobileNet architecture family
and provides SOTA results for lightweight models in CV
problems. MobileNetV3 has two effective models for
DL operations on mobile devices—MobileNetV3Small
and MobileNetV3Large—that can be used in low- and
high-resource mobile devices.

d) InceptionV3:InceptionV3 is the third version of Google’s
Inception CNN architecture that is used for image analysis
and object detection purposes. It is a DNN architecture
that has inception blocks where the same input tensor
is convolved with multiple filters and their results are
concatenated.

e) EfficientNet:EfficientNet is a scaling method and CNN
design that uniformly scales all depth, width, and res-
olution dimensions utilizing a compound coefficient.
EfficientNet consists of a collection of image classifica-
tion models that achieve SOTA accuracy while being an
order-of-magnitude smaller and much faster compared to
earlier models. While there are several variants of Effi-
cientNet family from the baseline model, EfficientNetB0
to EfficientNetB7 and EfficientNetV2B0 models were
used in this study.

f ) ResNet:Residual Network (ResNet) has residual blocks
and was introduced by Microsoft researchers to address
the vanishing and exploding gradient problem. In this net-
work, the skip connections method is applied to transfer
output from one layer to another, which helps to mitigate
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the problem of gradient vanishing, and a residual block is
a layer with a skip connection. ResNet101V2 model was
used in this study.

g) DenseNet:A variant of CNN called DenseNet uses dense
connections via dense blocks, where all layers are directly
connected to one another. While providing better parame-
ter efficiency, it also yields comparable results with a low
number of parameters to train and helps reduce overfitting
problems. DenseNet121 model was used in this study.

h) NASNet: NASNet, which stands for neural architecture
search (NAS) network, is also a sort of CNNmodel. Since
substantial engineering techniques are typically needed
when developing a neural network, NASNet attempts to
directly train the model architectures from the relevant
dataset and produces cutting-edge results with a smaller
model size and level of complexity. NASNetMobile and
NASNetLarge models were used in this study.

i) ConvNeXt:ConvNeXt is a pure convolutional model that
is more accurate, performant, and scalable than vision
transformers while maintaining the design simplicity of
CNNs. It not only includes easy, fully-convolutional
design of ResNets for both training and testing but also
outperforms vision transformers and allows for straight-
forward implementation. ConvNeXtTiny model was used
in this study.

2) LIBRARIES
A list of the libraries used in this study is given below:

a) TensorFlow: TensorFlow is a Python library that basically
contains numerical computation routines and can be used
for ML applications.

b) Keras:Keras is a Python-based DL application program-
ming interface (API) running on the TensorFlow ML
platform.

c) Scikit-learn:Scikit-learn is a free ML library for Python
that contains statistical modeling and ML methods, such
as classification, regression, clustering, and dimension
reduction.

d) Pandas:Pandas is an open-source data analysis and
manipulation tool built on Python programming language,
which is quick, robust, versatile, and easy to use.

e) NumPy:NumPy is a Python library that enables working
with arrays as well as offering tools for working with
matrices, the Fourier transform, and linear algebra.

f ) Python Imaging Library (PIL):The PIL package gives the
Python interpreter access to image processing features by
adding wide file format compatibility, effective internal
representation, and robust image processing capabilities.

g) Open-Source Computer Vision (OpenCV): OpenCV pro-
vides a free and open-source software library for CV and
ML applications.

3) GOOGLE COLAB
Google Colab is a research product of Google that enables
the generation and running of Python code via the Internet.

FIGURE 4. Classification of VAD methods.

It is a platform particularly suited for ML, data analysis, and
training purposes and provides a Jupyter notebook service
hosting environment that requires no installation and grants
access to computer resources, such as graphics processing
units (GPUs).

C. DATASETS
In this study, the CUHK Avenue, UCSD Ped1, and UCSD
Ped2 datasets, which are widely used in VAD benchmarking
studies, were employed to evaluate the efficiency of the pro-
posed approach.

1) CUHK AVENUE
The CUHK Avenue dataset has been widely utilized for
the detection of anomalies in academic studies since 2013.
As presented in Table 3, it includes 16 training and 21 test
video clips recorded inside the CUHK campus. The videos
consist of a total of 30,652 frames, including 15,328 training
and 15,324 test frames. While training videos include normal
events, test videos contain both normal and anomalous events.
Anomalous events consist of unusual human movements
(such as running, walking with a suspicious object, or throw-
ing an object), pedestrians going in the wrong direction, and
objects that are perceived as anomalies (such as an abandoned
object or a bicycle).

The video clips in the CUHK Avenue dataset were
recorded at 26 frames per second (fps). Each video consists
of 640× 360 resolution, colored (24-bit, RGB) frames. Three
anomalies found in the CUHK Avenue dataset are shown in
Figure 4.

2) UCSD PED1 AND UCSD PED2
The UCSD dataset is another popular dataset that is fre-
quently utilized by researchers for VAD. The dataset was
obtained using a fixed camera positioned at a height facing
the pedestrian crossings and contains videos showing varying
population densities on the walkways, from few to many
people.

Normally, the videos only contain pedestrians walking
on the road. In training videos, pedestrians either walk or
stand on the sidewalk. Anomalous events are caused by the
movement of non-pedestrian objects on the walkways (vehi-
cle movements on the walkways, wheelchair movements,
cycling, skating, walking on the grass, etc.) and anoma-
lous pedestrian movement patterns. Anomalies commonly
observed in the dataset include cyclists, skaters, small cars,
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TABLE 3. Properties of CUHK Avenue dataset.

FIGURE 5. Anomalies in the UCSD Ped1 Dataset a. Van, b. Wheelchair, c.
Skater, d. Cyclist.

and people walking on grass. A few images of people in
wheelchairs are also among the anomalies.

Two subgroups of the UCSD dataset were created,
each of which represents a different setting. Each scene’s
video recording was cut into pieces that contained about
200 frames. The UCSD Ped1 and UCSD Ped2 datasets were
recorded at 26 fps.

Video clips consisting of 200 frames each were generated
using videos from the UCSD Ped1 dataset that has a reso-
lution of 238 × 158 in tiff file format with 72-dpi and 8-bit
grayscale images. Video clips consisting of 120–180 frames
each were generated using videos from the UCSD Ped2
dataset that has a resolution of 360 × 240 in tiff file format
with 72-dpi and 8-bit grayscale images.

Table 4 and Table 5 present information about the UCSD
Ped1 and UCSD Ped2 datasets, respectively. Examples of
some anomalies found in the UCSD Ped1 and UCSD Ped2
datasets are shown in Figure 5 and Figure 6, respectively.

D. DATA PRE-PROCESSING
The data pre-processing steps involved in this study are pre-
sented in the following sections.

1) IDENTIFICATION OF ANOMALIES
The frames containing anomalous conditions in the test
datasets were read from files that were downloaded together
with the datasets. All datasets and the files containing frame
numbers of the anomalies were fetched from Google Colab
environment and edited so that they could be utilized in ML
methods and saved in Google Drive.

FIGURE 6. Anomalies in the UCSD Ped2 Dataset a. Cyclist, b. Van, Cyclist,
c. Cyclist, Skater, d. Skater.

2) EXTRACTION OF FRAMES
The training and test videos that make up the CUHK Avenue
dataset were converted into frames and saved in Google Drive
as image files to be used as input for DL methods.

3) RESIZE AND NORMALIZATION
Since the video samples in the datasets have different sizes,
the extracted frames were resized to 224 × 224 pixels and all
the pixel values were scaled into [1, 0] range.

4) CONVERTING TO GRAYSCALE
The training and test videos that make up the CUHK Avenue
dataset were converted to grayscale.

5) REORGANIZATION OF DATASETS
Since we adopted a TL and FT–based supervised learning
approach for VAD, we reorganized the original training and
test datasets so that we have (i) a training dataset, (ii) a
validation dataset, and (iii) a test dataset for each of the three
datasets. For this purpose, we applied the below steps:
a) Wefirst merged the normal frames in both training and test

datasets and created the normal frames of the new training
dataset. All normal frames were combined in the normal
folder.

b) We moved all abnormal frames from the test dataset into
the new training dataset’s anomaly folder.

c) We randomly selected 20% of the frames from the new
training dataset and created a validation dataset that has
both normal and abnormal frames randomly selected from
the normal and anomaly folders of the new training
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TABLE 4. Properties of UCSD Ped1 dataset.

TABLE 5. Properties of UCSD Ped2 dataset.

TABLE 6. Final datasets.

dataset. We removed those selected frames from the new
training dataset.

d) We randomly selected 20% of the frames from the valida-
tion dataset and created a test dataset that has both normal
and abnormal frames randomly selected from the normal
and anomaly folders of the validation dataset.We removed
those selected frames from the validation dataset.

The final datasets used in this study for the TL-FT-based
VAD method are given in Table 6.

IV. PROPOSED METHOD
In this study, a VADmethod that is based on TL and FT using
the supervised DL techniques is proposed and explained in
the following sections.

A. TL-FT-BASED VAD ALGORITHM
The majority of ML techniques, particularly those based on
DL, take a long time to train. Transferring a pre-trained
model from one data domain to another that is related but
distinctmight be oneway to solve the problemwithout having

to retrain the model or provide new datasets. For example,
without having to retrain, a model that was trained to detect
cars in video footagemay also detect trucks that were not seen
before. This approach is known as TL, which this study takes
advantage of.

Twenty publicly available Keras applications, which are
DL models with pre-trained weights, were used as base
models in this study. When a model is instantiated, weights
were automatically downloaded and the models were built
according to the image data format. The proposed method
consists of a selection of basic hyper parameter values and
training phases. Training phase also comprises TL phase
and FT phase. All models built in this study were trained
according to selected hyper parameter values.

1) IMAGE PRE-PROCESSING
Since every Keras application requires a particular type
of input pre-processing, we performed pre-processing of
our inputs before passing them to the base models. Before
training of the models with the images in the datasets,
images were pre-processed depending on the selected base
model. The TensorFlow library converted the input values
of the images into the format accepted by the models with
the pre-processing layer that it contains. All inputs were
pre-processed using the TensorFlow library available in the
pre-processing layers of the selected base models.

2) SELECTION OF HYPER PARAMETERS
Since several Keras applications were used as base models in
the proposed method and the DL model used in this study
was applied to all selected base models, the aim was to
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avoid overfitting with pre-trained base models using dropout
layers. In the absence of the dropout layers, the models tend
to memorize the training dataset and perform poorly in the
validation dataset during the FT phase. Therefore, after a
few trial-and-error steps, the dropout and dense layers used
in the DL model and the other hyperparameter values were
determined.

3) PROPOSED ARCHITECTURE
The general architecture of the proposed TL and FT–based
DL model that is adapted from [64] and used for VAD is
shown in Figure 7.

As shown in Figure 7, the DL model comprises an input
layer, a pre-processing layer, a pre-trained base model,
a global average pooling layer, dropout layers, and dense
layers. The input layer is the layer where the images were
given to the model. In the pre-processing layer, the inputs
were adapted to the base model. The fully connected layers
at the top of the base model were removed from the model,
and a GlobalAverage2D layer was added. While the dropout
layers were placed at the output of dense layers with ratios
of 0.25, 0.25, 0.25, 0.50, 0.50, and 0.50, the dense layers
had 512, 512, 128, 128, and 32 units in the architecture of
the proposed VAD model as shown in Figure 7. While the
ReLu activation function was used after the dense layers,
the sigmoid activation function was selected as the output
layer’s activation function since a binary classification was
performed where the DL model was designed to predict nor-
mal and anomalous frames. Binary cross-entropy was used
as the loss function, and the Nesterov Adam function was
utilized as the model’s optimization function in both the TL
and FT phases. The learning rate was selected as 0.001 for the
TL phase and 0.0001 for the FT phase. These selected layers
and parameters were applied to all models in the same way.

4) TL PHASE
Before training the proposed VAD model, all inputs were
pre-processed using the pre-processing functions of the base
models. Input shapes of frames were pre-processed and
adapted for each of the base models. Then, base models
were instantiated using weights pre-trained on ImageNet and
without including the fully connected layers at the top of the
base model networks. Base model layers were frozen during
the TL phase, and the model was compiled using binary
cross-entropy as the loss function and the Nesterov Adam
function as the optimizer. After the compilation of the model,
it was trained on the created training data.

Since the problem in this study is the detection of nor-
mal and anomaly classes, the weights obtained from the
pre-trained base models were preserved by freezing the base
model layers for training. During the TL phase, only the
layers added to the output layer of the DL model, as can
be observed from Figure 7, were trained. During the model
training, a total of 999 epochs with a batch size of 8 were
used. We applied the early stopping technique, which is a
form of regularization that is used to avoid overfitting while

TABLE 7. Number of layers for FT and other model parameters.

training the learner with an iterative method. We monitored
the performance of the network on our validation set, and the
models that did not improve with a wait of 20 epochs after
the best accuracy value, based on validation accuracy, were
stopped by applying early stopping. We observed that all of
the models were early stopped during the TL phase and went
through the FT phase while preserving their weights.

5) FT PHASE
In the FT phase, we aimed to activate the previously frozen
base model layers for training by preserving the weights
obtained in the TL phase of the model, thus acquiring higher
accuracy values. Table 7 lists the number of layers in the base
model, the number of layers that underwent FT, the number
of parameters in the base model, the number of trainable
parameters, and the total number of parameters in the base
models used in this study.

The number of layers specified in Table 7 reflects those
reported by the TensorFlow tool. The number of layers
fine-tuned shows howmany layers were activated for training
during the FT phase in the base model backward from the
output layer.
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FIGURE 7. General architecture of the proposed VAD model.

TABLE 8. Number of epochs for CUHK avenue test dataset.

The general view on the activation of the layers for training
is that the first layers of the model learn only the basic
features, while the layers close to the output learn more
complex features. During the backpropagation of artificial
neural networks, weights are updated from the output layer
toward the input layer. For these two reasons, we preferred
to freeze the bottom layers and train the remaining top layers
that are close to the output layer. The number of layers to
be fine-tuned was determined as a percentage in this study
because the number of layers varies depending on the base
model. We calculated 15% of the total number of layers of
the base model and rounded it to an integer, and those top
layers of the base model were unfrozen for training during the
FT phase, while the rest of the layers were kept frozen. The
DLmodel was recompiled using the Nesterov Adam function
as the optimizer with a low learning rate, i.e., 0.0001, for
the modifications to take effect. After recompilation of the
model, we trained our model again on the created training
data. By using the same epoch number (i.e., 999), batch size
(i.e., 8), and the early stopping approach applied in the TL

TABLE 9. Number of epochs for UCSD Ped1 test dataset.

phase, the training of the DL model during the FT phase was
carried out. Similar to the TL phase, we noticed that all the
models were early stopped during the FT phase.

Table 18, Table 9, and Table 10 show the number of epochs
executed in the proposed VAD model during the TL and FT
phases for the CUHK Avenue, UCSD Ped1, and UCSD Ped2
test datasets, respectively. Although the number of epochs
was set as 999 for both the TL and FT phases, all of themodels
were early stopped during both TL and FT phases, as can be
seen from Table 18, Table 9, and Table 10. The total number
of epochs was observed to vary within 68–162, 78–180, and
71–142 for the CUHKAvenue, UCSD Ped1, and UCSD Ped2
datasets, respectively.

B. PERFORMANCE EVALUATION METRICS
Several metrics that are widely used in assessing the perfor-
mance of ML models were utilized for the evaluation of the
proposed VAD model. Accuracy, precision, recall, F1-score,
and AUCmeasure were the metrics used for the evaluation of
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TABLE 10. Number of epochs for UCSD Ped2 test dataset.

TABLE 11. Model evaluation metrics.

the models in this study, and they are given in Table 11, along
with their calculation formulas.

True Positive, abbreviated as TP, refers to the quantity of
accurately classified abnormal frames. True Negative, or TN,
refers to the quantity of accurately classified normal frames.
False Positive, or FP, refers to the quantity of normal frames
that were misclassified. False Negative, or FN, refers to the
quantity of abnormal frames that were misclassified.

V. RESULTS
A. DATASETS
The CUHK Avenue, UCSD Ped1, and UCSD Ped2 datasets,
which are often used in the literature for VAD, were used
in experiments to measure the performance of the proposed
approach.

B. EXPERIMENTAL ENVIRONMENT
All of the experiments in this study were performed in a
Google Colab environment using 83.5 GB RAM and an
NVIDIA A100-SXM4 GPU that has 40 GB RAM. The
proposed TL-FT-based VAD approach was developed with
Python programming language, and all the models were
trained using Keras and TensorFlow frameworks.

C. EXPERIMENTAL RESULTS
Results of the evaluation metrics used in this study for the
created validation and test datasets are given in Table 12,
Table 13, and Table 14. While validation loss and valida-
tion accuracy values were obtained using validation datasets,
test loss, test accuracy, precision, recall, F1-score, and AUC
scores were obtained using test datasets. As can be observed
from Table 12, Table 13, and Table 14, variants of Efficient-
Net basemodels helped achieve the highest scores in different
evaluation metrics for all datasets using the TL-FT-based
approach proposed in this study.

1) COMPARISON OF ACCURACY VALUES
Although accuracy rates tended to rise as the number of
epochs increased and the FT phase of the proposed DLmodel
helped improve the test accuracy for most of the models,
there were also some models whose accuracy rates were not
improved during the FT phase. VGG19 and ResNet101V2
models were stuck in local minimums while training on the
CUHK Avenue and UCSD Ped1 datasets, and the proposed
approach did not improve their VAD performances. It should
be noted that due to being stuck in local minimums, these
models that did not improve during the FT phase reported
the lowest scores in all evaluation metrics, although their
validation accuracy rates were greater than 85% during the
TL phase.

The highest accuracy rate of 99.10% was achieved with
the Xception base model for the CUHK Avenue test dataset,
the highest accuracy rate of 100% was achieved with the
EfficientNetB5 base model for the UCSD Ped1 test dataset,
and the highest accuracy rate of 100% was achieved with
VGG16, VGG19, EfficientNetB0, EfficientNetB3, Efficient-
NetV2B0, and DenseNet121 base models for the UCSD Ped2
test dataset. There were several base models where the pro-
posed TL-FT-based VAD approach provided SOTA accuracy
rates for the UCSD Ped2 test dataset.

Accuracy-epoch graphs of the proposed VAD method
using EfficientNetB3 as the base model for the CUHK
Avenue, UCSDPed1, andUCSDPed2 test datasets are shown
in Figure 8, Figure 9, and Figure 10, respectively. It can be
observed from Figure 8, Figure 9, and Figure 10 that both
training and validation accuracy rates were increased when
the FT phase was applied after the TL phase. These figures
illustrate that the VAD performance of our approach is further
enhanced by applying the FT mechanism followed by TL.
As far as we know, this is the first attempt in the literature
to utilize a TL-FT-based hybrid approach to enhance the
detection rate of anomalies.

2) COMPARISON OF AUC SCORES
It can be noticed from Table 12, Table 13, and Table 14
that the highest AUC rate of 98.41% was achieved with
the MobileNetV3Large base model for the CUHK Avenue
test dataset, the highest AUC rate of 100% was achieved
with the EfficientNetB5 base model for the UCSD Ped1 test
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TABLE 12. Results of the evaluation metrics for CUHK avenue dataset.

TABLE 13. Results of the evaluation metrics for UCSD Ped1 dataset.

TABLE 14. Results of the evaluation metrics for UCSD Ped2 dataset.

dataset, and the highest AUC rate of 100%was achieved with
VGG16, VGG19, EfficientNetB0, EfficientNetB1, Efficient-
NetV2B0, and DenseNet121 base models for the UCSD Ped2

test dataset. Similar to the highest accuracy rates, the same
base models provided SOTA AUC scores for the UCSD Ped2
test dataset.
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FIGURE 8. Accuracy-epoch graph of CUHK Avenue dataset.

FIGURE 9. Accuracy-epoch graph of UCSD Ped1 dataset.

Since VGG19 and ResNet101V2 base models were stuck
in local minimums and their VAD performance did not
improve during the FT phase, the DL models where these
used basemodels were not able to identify anomalies reported
the lowest AUC scores.

3) COMPARISONS OF COMPUTATIONAL RESOURCES
ANALYSES
Comparisons of the processing time analyses (seconds per
frame) for the CUHK Avenue, UCSD Ped1, and UCSD Ped2
test datasets are given in Table 15, Table 16, and Table 17,
respectively.While training time represents the total period of
time needed for the TL and FT phases for a frame, prediction
time represents the time needed to predict if a frame is normal
or anomalous. The proposed approach, where VGG16 and
VGG19 were used as base models, had fastest training and
prediction times for all three datasets. Considering the low
prediction time of a frame, it can be deduced that the proposed
TL-FT-based VAD approach can be employed for real-time
VAD applications.

Computational resources in terms of GPU hours for the
CUHK Avenue, UCSD Ped1, and UCSD Ped2 test datasets
are presented in Table 18, Table 19, and Table 20, respec-
tively. TL phase represents the total period of GPU hours
needed for TL, FT phase signifies the total GPU hours
required for the FT phase, and total time denotes the total
period of GPU hours taken for the TL and FT phases.
As Table 18, Table 19, and Table 20 show, the proposed
approach, where VGG16 and VGG19 were used as base
models, was observed to have the shortest GPU hours for
the TL and FT phases and reported the least total time for
all three datasets. It is noticed that the highest TL phase,
FT phase, and total time values were obtained where Effi-
cientNetB5, EfficientNetB6, and NASNetMobile were used
as base models for three datasets. It can further be observed
that while base models with a higher number of layers needed
more GPU hours for the TL and FT phases and yielded higher
total time values, those with a lower number of layers needed
shorter GPU hours for the TL and FT phases and yielded
less total time. As can be seen from Table 18, Table 19, and
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FIGURE 10. Accuracy-epoch graph of UCSD Ped2 dataset.

TABLE 15. Processing time analysis of CUHK Avenue test dataset.

Table 20, while the total period of GPU hours needed for the
UCSD Ped2 test dataset varied within 0.19–0.70, it varied
within 0.52–3.56 GPU hours for the UCSD Ped1 dataset and
0.73–7.39 GPU hours for the CUHK Avenue dataset.
We noticed that the total amount of GPU time tends to grow
as the dataset size and number of layers in the base model
increase.

We also performed a comprehensive run-time analysis
comparison of different methods in Table 21. We compared
the computational efficiency of our proposed method with
several methods in the literature. Our approach is able to
predict if a frame is anomalous in a much less amount
of time compared to other methods. Depending on the
base model type, the proposed method can predict the
class of a frame in the CUHK Avenue dataset within
0.0008–0.0081 seconds (i.e., between 123 and 1,250 fps), can
predict the class of a frame in the UCSD Ped1 dataset within
0.0018–0.0125 seconds (i.e., between 80 and 556 fps), and
can predict the class of a frame in the UCSD Ped2 dataset
within 0.0055–0.0328 seconds (i.e., between 30 and 182 fps).

TABLE 16. Processing time analysis of UCSD Ped1 test dataset.

TABLE 17. Processing time analysis of UCSD Ped2 test dataset.

Due to the fact that higher frame rates per second, i.e., fps,
correspond to quicker anomaly detection, considering the
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TABLE 18. Computational resources analysis of CUHK avenue test
dataset.

TABLE 19. Computational resources analysis of UCSD Ped1 test dataset.

achieved fps rates that are relatively higher for the three public
VAD datasets, we believe that our TL-FT-based algorithm is
not only fast and effective but also an efficient solution for
real-time VAD. We noticed from Table 21 that running an
algorithm on the GPU results in a performance improvement
of up to 30 times compared to running an algorithm on the
CPU. This indicates that GPU cards can operate at a speed
that is around 30 times higher than a CPU’s. For this reason,
due to computationally intensive operations performed in DL
techniques, it is recommended to run the VAD algorithm on
a GPU for a shorter inference time.

VI. DISCUSSION
The majority of previous studies suggest specific DL-based
CVmodels that need substantial amounts of data for training;
however, this restricts their use in situations where there is
plenty of data available. In addition, the training time of
these models increases exponentially with the volume of data,
which makes them unfeasible to use in environments where
the models need to continuously learn. Therefore, we propose
a novel TL-FT-based VAD method that utilizes TF to extract

TABLE 20. Computational resources analysis of UCSD Ped2 test dataset.

significant features from video footage. Furthermore, since
our approach takes advantage of using DL models with pre-
trained weights, we managed to reduce the total amount of
time needed for training the VAD method, which can be
observed in Table 18, Table 19, and Table 20. The total period
of training time varied within 0.19–0.70 hours for the UCSD
Ped2 dataset, 0.52–3.56 hours for the UCSD Ped2 dataset,
and 0.73–7.39 hours for the CUHK Avenue dataset using
an NVIDIA A100-SXM4 GPU. Compared to SOTA VAD
methods in the literature that take one hour for UCSD Ped2
and 15 hours for CUHK Avenue to train the model with an
NVIDIA GTX TITAN Xp [49] and 16 hours to train the
model using an NVIDIA Tesla V100 GPU card [23], our
approach is observed to be an efficient solution in terms of
training time. Moreover, as can be observed from Table 21,
our TL-FT-based VAD algorithm is able to detect anoma-
lies much faster than other methods in the literature, which
demonstrates its effectiveness in terms of run-time.

In addition to the advantages of using pre-trained DL
models for VAD, there are also some challenges. One of
its challenges is the computational complexity of thoroughly
examining various DL models to choose the best one.
Researchers need to empirically test and validate to find out
the most efficient model for their requirements. Studying the
security implications of pre-trained DL models is also nec-
essary, as vulnerabilities and attacks targeting these models
need to be considered.

There are some limitations to using pre-trained DL models
for VAD as well. Long training times when the model is run
on limited hardware resources and the requirement for a large
number of instances to obtain a satisfactory performance can
be regarded as two major limitations. (i) The possibility of
domain mismatch, (ii) large-scale pre-training data depen-
dence, (iii) the inability to handle data quality, (iv) the absence
of explainability, (v) the likelihood of shifting labels, and
(vi) the risk of changing the model’s focus are some other
limitations [78] of using pre-trained DL models for VAD
purposes.
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TABLE 21. Run-time analysis of different methods.
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TABLE 21. (Continued.) Run-time analysis of different methods.

VII. CONCLUSION
A frame-level VAD method based on the TL and FT
approaches was proposed in this study, where 20 Keras appli-
cations that are popular in the literature were used as the base
models. Anomaly detection performances of the models were
improved by performing FT. All experimental studies were
carried out in a Google Colab environment, using the UCSD
Ped1, UCSD Ped2, and CUHK Avenue public datasets. The
performances of the models were measured by calculating
AUC, accuracy, precision, recall, and F1-score values. It was
observed that the proposed approach achieves SOTA VAD
performance, where 100% AUC and accuracy values were
obtained for both UCSD Ped1 and UCSD Ped2 test datasets.
The highest AUC and accuracy scores for the CUHK Avenue
test dataset were observed at 98.41% and 99.10%, respec-
tively. We observed that EfficientNet architectures achieve
higher performance than the other architectures for the bench-
mark datasets. As a result, when compared to SOTA VAD
approaches, the proposed VAD framework has demonstrated
better performance, considering high AUC scores and aver-
age accuracy rates for the benchmark datasets. Based on the
outcomes of the experiments, it is worth mentioning that the
proposed technique seems to be suitable for real-time VAD
applications, considering the low prediction times.

While satisfactory VAD detection performances were
achieved using VGG19 and ResNet101V2 as base models
for the UCSD Ped2 dataset, these models were stuck in local
minimums, and their detection performance did not improve
during the FT phase for the UCSD Ped1 and Avenue datasets.

Considering the run-time analysis of different methods,
our approach is not only able to quickly detect anomalies
compared to SOTAmethods in the literature but also effective
in terms of training time.

In the future, we plan to optimize the hyperparameters
to further enhance VAD performance and make additional

improvements to the proposed method for anomaly detection
at the pixel level.
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