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Abstract Retailers have to deal with increasing levels of product returns as the shares
of e-commerce sales soars. With this increase, it is no longer feasible to dispatch re-
turned products to outlets or landfills, hence retailers must re-evaluate them both
to maximize profit and to minimize their environmental impact. Our objective is to
study a retailer’s optimal inventory control policy under product returns to maximize
expected profit which is the sales revenue minus the procurement, backorder, hold-
ing, and salvage costs incurred in a finite horizon. We model a period’s returns to
be stochastically dependent on the previous period’s sales quantity. Using dynamic
programming formulation, we solve for the optimal periodic review inventory pol-
icy and provide structural results on the optimal policy of the final period. Through
numerical studies, we show that incorporating detailed sales-dependent returns could
increase a retailer’s expected profit by 23%. Ignoring this dependency in determining
the optimal inventory policy results with increased order frequency, higher levels of
backorders and more leftovers which could eventually end up in a landfill, but above
all could lead to a significant overestimation of the resulting profit.

Keywords inventory management · stochastic product returns · dynamic program-
ming

1 Introduction

The retail industry is gigantic and was worth nearly $24 trillion in 2019 (O’Connell
2020). The industry is mostly run by large retail chains since they have the cost ad-
vantage of buying huge amounts of inventory. Walmart, the largest retail chain in the
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world, is top-ranked among all industries in Fortune Global 500 list for years. As the
retail industry expands and evolves with digitalization, consumers with dynamic pur-
chasing behaviors are also pushing for higher levels of personalization and quality.
To overcome this consumer hunger, retailers increase the number of products they
offer. For example, Walmart offers more than 75 million stock keeping units for sale
on its online channel (Lore 2018).

A majority of the retail chains sell through both off-line and online stores, with
an increasing focus on the latter, and allow customers to experience a smooth service
from both channels. The Chinese company, Alibaba Group, significantly increased
the online retail sales with its 580 million active monthly users while European or US
countries face the brick and mortar store closures (Devani and Coonan 2018). During
the Covid-19 pandemic, the retail industry has even struggled with jumping online
sales due to “stay at home” obligations. Bhattarai (2020) states that Walmart’s online
sales increased by 74%, lifting overall sales by nearly 9% in two months. Adobe’s
Digital Economy Index for July 2020 reveals that US online sales increased 55% from
last year, despite a slowdown in the growth due to reopened states (AdobeAnalytics
2020). According to the report, online shopping was preferred for cheaper prices
before the pandemic but now it seems that this differentiation is no longer valid and
in fact, online sales are substituting off-line sales.

As retail e-commerce grows rapidly, product returns are also growing. Either for
legislative or competitive reasons, many companies accept returns without any rea-
son declared, under the “No Questions Asked Return Policy” (Ülkü and Gürler 2018),
and this customer experience increases sales. The National Retail Federation states
that $260 billion in merchandise has been returned in 2016 in the US, which is a 66%
increase from five years ago. The lack of power of touch at the online stores further
increases the number of returns. Smith (2015) presents that a brick-and-mortar store
faces returns as the 10% of the sales, whereas this ratio is 20% with e-commerce
returns. Holiday e-commerce returns increase to 30% of the sales and even to 50%
of the sales for expensive products. Increasing return rates are also attributable to
strategic customers who are abusing the return policies of retail companies and or-
dering more than they need to resolve fit uncertainty and then simply returning the
unfit fashion items (Ülkü and Gürler 2018). Mostard and Teunter (2006) reports that
for catalog retailers return rates on fashion items are generally around 35–40% and
could increase to 75% of the sales for some products.

Product returns are often accepted for longer periods when there is a defect un-
der product warranty. This return process is often protected by law. Companies also
may accept returns of no-defect products for a shorter declared period even if it is not
always obligatory, which is the focus of this paper. Retailers can increase consumer
satisfaction and loyalty and collect data regarding consumer behavior or product per-
formance by allowing returns of no-defect products. Retailers also have the advantage
of using the funds obtained from the revenue of the returned products till the product
is eventually returned and the customer is refunded, which could take a substantial
amount of time. However, handling product returns could be costly especially when
the returns are not resold. If the returns are not added back to the inventory in the
selling season, they could stay in the warehouse generating holding costs until they
are resold or salvaged or could go to landfill generating obsolescence or environmen-
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tal costs. Hence retailers are in a position to carefully manage their inventories to
address these challenges in order to reap the benefits of product returns.

Inventory management under product returns requires detailed sales and returns
data. Trivially, the number of product returns depends on the previous product sales:
as sales increases, returns in the following period are also likely to increase. However,
relevant data to measure this dependency may not be available. Not all companies
keep a separate record of sales and return data due to practical reasons and instead
keep track of net sales which is product sales minus returns in a particular period.
When the return rates are low, the net sales approach is convenient. In the retail sec-
tor, some firms, especially those with e-commerce channels, keep very detailed sales
and returns data. In this paper, we will present an inventory control model in which
stochastic returns depend on previous sales. Our model would help firms to quantify
the benefits of keeping detailed sales and returns data, and how to leverage this data
in managing product inventories.

In the literature, there are many papers on inventory management of remanufac-
tured or recycled return items (see, for example, Fleischmann and Kuik 2003, Bened-
ito and Corominas 2013. Another stream of literature focuses on return items that
can be sold immediately without any processing (see, for example, Kiesmüller and
Van der Laan 2001 and Zerhouni et al. 2013. We contribute to the latter stream of
literature by incorporating the dependency of returns on previous sales. In our model,
we maximize a retailer’s expected total revenue less the costs of fixed order, procure-
ment, backorder, holding, and salvage incurred in a finite horizon. We assume that
product returns are stochastically dependent on the previous period’s sales quantity.

Our main contributions to the existing literature can be summarized as follows:
(1) The form of stochastic dependency of returns on the previous sales modelled in
this paper is original and rich in details and thus operationally more relevant for the
practitioners. (2) Using dynamic programming, we derive an optimal periodic review
inventory policy for our problem and demonstrate that an (s,S) type inventory policy
may no longer be optimal. (3) We show some structural properties of the optimal in-
ventory policy in the last period.(4) We compare the profits of a return-smart retailer
who manages its inventory by keeping separate records of sales and returns and fol-
lowing our results and a return-naive retailer who does not track sales explicitly and
simply uses the net demand approach (i.e., considers only the product demand less the
product returns). Using Monte Carlo simulation, we find that the return-smart retailer
could enjoy on average 23% more profit than the return-naive retailer. We find that
this profit improvement percentage is most sensitive to the fixed order cost, backorder
cost, and return rates. The return-smart retailer considers the possible incoming prod-
uct returns and orders less frequently (thus saves from the fixed order cost) compared
to the return-naive retailer. The latter option leads to lower order-up-to levels which
increase backorders as the return rates increase. (5) Finally, we provide an extension
of our model with backorders to the case with lost sales.

The paper is organized further as follows. In Section 2, we review the related
literature. In Section 3, we describe the details of the model and our assumptions.
Analytical results on the formulated problem are discussed in Section 4. We exhibit
the results of a numerical study along with a sensitivity analysis in the next section.
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We present an extension with the lost sales case in Section 6. Finally, we summarize
the results and conclusions and give an outlook for future research in Section 7.

2 Literature Review

Product returns have been studied in the literature along several lines of research
such as inventory management with return flow (see, for example, Reimann 2016),
the effects of return cost (see, for example, Shulman et al. 2010), and pricing strat-
egy under product returns with money-back guarantee policy (see, for example, Chen
et al. 2019). We focus on the inventory management implications of product returns,
which have been studied in literature since the late seventies. The first papers are
about disposal, remanufacturing, or recycling decisions for product returns. In this
section, we review papers that use stochastic models and refer the readers on papers
with deterministic models to Schrady (1967) as one of the earlier works and Fleis-
chmann et al. (1997) for various extensions. We consider two streams for the papers
in this group: The papers in the first stream assume that returns are not directly added
back to inventory upon receipt but either remanufactured or disposed of, if there is
no need for new products. In the second stream, papers assume that all returns are
directly added back to inventory to satisfy future demand, similar to the setting in
this paper.

The first stream includes papers focusing on hybrid manufacturing, remanufac-
turing, and disposal processes. Demand and return distributions are mostly assumed
to be independent across periods and a net demand approach is followed which sim-
ply uses the demand amount after the returns are deducted. Only a handful of these
papers assume that demand and returns are correlated albeit within the same period.
For example, Simpson (1978) and Inderfurth (1997) study settings where a customer
will need a brand new product upon return of an old product that reached its end of
life. The papers in this stream could be further grouped based on the inventory review
period employed.

One of the papers that studies a continuous review of the optimal disposal policy
with returns is Heyman (1977). The paper aims to determine how many of the returns
will be remanufactured and how many of them will be disposed of. Heyman (1978)
extends this previous model and instead of disposal, excess returns are assumed to
be sent to a central warehouse. In his model when the inventory of returned items
reaches a certain value, then inventory is decreased to a specific level by initiating
a remanufacturing cycle. Muckstadt and Isaac (1981) extend the preceding study by
adding lead time and fixed order cost under both single and two-echelon systems.
Van der Laan et al. (1996) extends the model studied in the preceding study with
the possibility of partial disposition. Fleischmann et al. (2002) revises Muckstadt
and Isaac (1981)’s model by eliminating remanufacturing requirement and allowing
returns to be added back to inventory upon receipt. They find that the conventional
(s, Q) inventory policy is still optimal under return flow. A multi-echelon extension
to the continuous review inventory control with product returns problem is studied in
Mitra (2009). Flapper et al. (2012) studies an infinite horizon continous review model
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with returns where demand and returns are independent. Gayon et al. (2017) studies
a similar model with an extension of manufacturing fixed cost and lead times.

The papers in the second group consider periodic review inventory policies. Simp-
son (1978) finds the optimal solution to an n-period repairable return inventory prob-
lem. Inderfurth (1997) incorporates positive lead times to Simpson (1978)’s model.
Kiesmüller and Scherer (2003) suggests effective heuristics to solve the models pre-
sented in the preceding two papers. Fleischmann and Kuik (2003) studies the average
cost optimality of an (s, S) manufacturing policy with return flow using net demand
in an infinite horizon assuming dependence of stochastic demand and returns within
the same period. This work is extended in Mahadevan et al. (2003) with a push pol-
icy that controls the release time of the returned products to the remanufacturing line
and decides the manufacturing quantity of new products. DeCroix (2006) extends the
first two papers in this group via a serial multi-echelon inventory system with return
flow in a finite horizon. They find the optimal inventory policy when re-manufactured
items flow into the most upstream stage. Mitra (2013) extends this study with corre-
lated demand and returns within the same period. Calmon and Graves (2017) incor-
porates fixed cost and lead time setting to Simpson (1978) but assumes that unmet
demand is outsourced from an external source instead of a backorder model. More
recently Fu et al. (2019) studies a model that assumes stochastic dependency of the
returns and sales within the same period.

Papers in the second stream studies inventory control problems under recycling of
returns. The recycled (i.e., returned) items are mostly added back to inventory without
further processing (e.g., merchandise, containers, blood) or sometimes requires some
processing but lead time or cost involved in such operations is ignored in most of the
models. Since this group includes many papers, we simply concentrate on the papers
in which demand and returns are assumed to be dependent across periods.

Cohen et al. (1980) studies a periodic review inventory system with recycling in
which returns are deterministic and modeled to be a fixed fraction of demand. The
paper assumes lost sales in a finite horizon with no fixed order cost or lead time.
Kelle and Silver (1989) study a similar model with stochastic returns. Using simu-
lation, the authors compare different return forecasting methods based on the gran-
ularity of the return and demand data (e.g., only aggregate, past period(s) demand,
past period(s) return) and find the reorder point given the return forecast. Buchanan
and Abad (1998) employs dynamic programming to solve the similar model of the
preceding work assuming finite horizon. Yuan and Cheung (1998) studies a contin-
uous review (s, S) inventory system for rental products in which stochastic returns
are dependent on demand. In a finite period model, Kiesmüller and Van der Laan
(2001) studies a periodic review inventory system where product returns are depen-
dent on demand under positive total lead time. Zerhouni et al. (2013) uses Yuan and
Cheung (1998)’s model and compares the demand-dependent return model with an
independent one and suggest a heuristic to solve the problem. Benedito and Coromi-
nas (2013) considers a similar setting of Kelle and Silver (1989) and Kiesmüller and
Van der Laan (2001) where the amount of returns depends on the useful life of the
products sold and the probability of returns.

Table 1 provides a taxonomy of the most relevant papers to this work. In the first
column, we group the papers based on the studied inventory control method e.g., pe-
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Table 1: Detailed comparison of closely related papers

Review Return Solution Unmet Horizon Fixed Lead Demand Return
Type Dependency Method Demand Cost Time Distribution Distribution

Heyman (1977) C I MC NA F Poisson Poisson
Heyman (1978) C I MC NA IF Poisson Poisson
Simpson (1978) P DWP DP BO F Generic Generic
Muckstadt and Isaac (1981) C I MC BO IF * * Poisson Poisson
Kelle and Silver (1989) P DAP S NA F * Normal Binomial
van der Laan et al.(1996) C I MC/H BO IF * * Poisson Poisson
Inderfurth (1997) P DWP DP BO F * Generic Generic
Yuan and Cheung (1998) C DAP MC/H BO IF * Poisson Exponential
Buchanan and Abad (1998) P DAP DP BO F Generic (Exp.) Generic (Uniform)
Kiesmüller and van der Laan (2001) P DAP MC BO F * Poisson Poisson
Fleischmann et al. (2002) C I MC BO IF * * Poisson Poisson
Fleischmann and Kuik (2003) P DWP MC BO IF * * Generic (Poisson) Generic (Poisson)
Kiesmüller and Scherer (2003) P I DP/H BO F * Normal Normal
Mahadevan et al. (2003) P I H/S BO IF * Poisson Poisson
De croix (2006) P DWP DP BO F * Generic Generic
Mitra (2009) C I S BO IF * * Normal Normal
Flapper et al. (2012) C I MC LS IF Poisson Poisson
Mitra (2013) P DWP S BO IF * Normal Normal
Benedito and Corominas (2013) P DAP MC/H NA IF Generic Generic (Binomial)
Zerhouni et al. (2013) C DAP MC/H LS IF Poisson Exponential
Calmon and Graves (2017) P DWP S/H NA F * * Generic Generic
Gayon et al. (2017) C I MC BO IF * * Poisson Poisson
Fu et al.(2019) P SWP DP LS F Generic (Uniform) Generic (Uniform)
Our Paper P SAP DP BO F * Generic (Poisson) Binomial

riodic review (P) and continuous review (C). The next column specifies the return
dependency on demand under five clusters: independent from demand (I), demand
dependent within the same period (DWP), demand dependent across periods (DAP),
sales-dependent within the same period (SWP), and sales-dependent across periods
(SAP). In the third column, we indicate the employed solution methodology: dynamic
programming (DP), Markov Chain modeling (MC), simulation (S), or heuristics (H).
We also label the unmet demand assumption as backorder (BO), lost sales (LS) or
an instantaneous outsource supply (NA) in column four. The next one lists whether
the model covers a finite (F) or an infinite horizon (IF). Columns six and seven de-
notes papers with fixed ordering cost or lead times, respectively, for procurement
or remanufacturing with an asterisk. The last two columns specify the distributions
used to model demand and return in the main model and the computational study in
parenthesis.

In this paper, we employ dynamic programming to solve for the optimal inven-
tory control policy of a firm that accepts returns that depend on previous period sales.
Moreover, we quantify the benefit of using this detailed approach instead of ignor-
ing the dependency between sales and returns. Our contribution to the literature is
to present and study a model with previous sales-dependent stochastic return flows
while including fixed ordering costs in a finite horizon setting. We believe the most
significant contribution is to model the dependency between previous period sales
and the next period returns. The stochastic dependency of returns on the previous
sales as assumed in Buchanan and Abad (1998) and Benedito and Corominas (2013)
translates into a dependency of returns and demand, as any unmet demand can be sat-
isfied instantaneously in these papers. In a two-period model for a perishable product,
Fu et al. (2019) assumes that returns are dependent only on the current period’s sales.
Another contribution of this paper is to include a fixed ordering cost, which has not
been studied previously in conjunction with return dependency. These additional con-
siderations result in a detailed model and thus practically relevant conclusions about
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managing inventories under return flows.

3 Model Formulation

We consider a retailer’s finite horizon periodic review inventory control problem
where the product returns depend on the previous period sales quantity. We assume
that the retailer has a single store and focus on a single item that is allowed to be re-
turned within one period upon purchase without any restrictions. The returned prod-
uct is assumed to be in almost perfect condition and is directly put on the shelf for
resale as a new product upon arrival to the store after minor processing which is
assumed to have negligible cost and takes negligible time.

The retailer reviews its net inventory at the beginning of each period t, It and
gives a replenishment order, Ot , if necessary, which is received after a negligible
replenishment lead time. Next, product returns, Rt , are accepted and then demand
(Dt ) and resulting sales (SLt ) are realized. Any unsatisfied demand is backordered
(Bt ). At the end of the period, holding or backorder costs are incurred. We assume
that the selling season for this product ends after T periods. After the end of the
selling season, either the final shortage is satisfied via a final procurement or the
remaining inventory is salvaged. A list of notations is provided in Table 2.

Table 2: List of notations used in this paper

c Unit procurement cost
K Fixed ordering cost
h Holding cost per unit per period
b Backorder cost per unit per period
r Return credit
s Salvage value
p Retail price
α Return probability
T Number of periods in the selling season
It Net inventory at the beginning of period t
Ot Replenishment order in period t
Dt Demand realized during period t
SLt Sales realized during period t
Rt Returns received during period t
Bt Backorder quantity at the end of period t
St Inventory level just after replenishment order but

before demand and returns

We assume that the demand across periods, Dt , is independent and identically
distributed and is a discrete random variable with probability mass function f (x) and
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mean µ . Customers pay a unit price of p to purchase the product. Each sold product in
period t is assumed to be returned in period t +1 with probability α . We assume that
return probability is independent of the sales period, but our model can be extended to
incorporate nonidentical return probabilities across sales periods. Given the previous
period sales SLt−1, let CRi,t denote a Bernoulli random variable for sold product i’s
(i ∈ {1,2, ...,SLt−1}) return status (CRi,t = 1 implies a returned product). One could
then calculate the total return quantity in period t as follows:

Rt =
SLt−1

∑
i=1

CRi,t

which trivially follows a binomial distribution with parameters α and SLt−1. Imme-
diately upon the receipt of a return, the retailer is obliged to pay return credit, r, back
to the customer. It is trivial to extend our model to incorporate nonzero unit return
processing cost by simply increasing the value of r accordingly.

The retailer begins the initial period with zero inventory. Then the total cost of
ordering in any period has two parts: unit procurement cost, c, and fixed ordering
cost, K. Thus, the total cost of ordering Ot units is denoted by c̄ and can be stated as
follows:

c̄(Ot) =

{
K + cOt if Ot > 0,
0 otherwise.

(1)

Any excess inventory at the end of a period incurs unit holding cost, h. Similarly, any
shortage at the end of a period incurs unit backorder cost, b.

We formulate the retailer’s multi-period inventory control problem using dynamic
programming. The state variable at each period t has two components: the net inven-
tory at the beginning of this period (It ) and the sales quantity at the previous period
(SLt−1). Our objective is to find the optimal net inventory just after replenishment
in each period, St := It +Ot , to maximize the expected profit. Using the principle of
optimality, one could write the backward recursive formulation for the expected total
profit-to-go function Pt(It ,SLt−1) as follows:

Pt(It ,SLt−1) = max
St>It
{pEDt ,Rt [SLt ]− c̄(St − It)− rE[Rt ]− J(St ,SLt−1)

+EDt ,Rt [Pt+1(It+1,SLt)]}
(2)

where the first term is the expected revenue from sales, next two terms are the order-
ing and return costs and the fourth term is the current period’s total expected backo-
rder and holding costs which could be written as:

J(St ,SLt−1) = hEDt ,Rt [(St +Rt −Dt)
+]+bEDt ,Rt [(Dt −St −Rt)

+]. (3)

In this paper, we use the notations x+ := max{0,x} and x− := max{0,−x}. During
the selling season, the net inventory cannot be salvaged or destroyed. Hence the only
constraint on the admissible inventory policies is that St ≥ It : the net inventory af-
ter replenishment cannot be less than the beginning net inventory. Both parts of the
state variable at period t + 1, It+1 and SLt , depend on demand and return of period
t. Hence the expectation before next period’s profit-to-go function in equation (2) is
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over Dt and Rt . Finally, we assume that there is no discounting as the selling season
is comparatively short for many retail products.

The transition of the state variable can be explained in two parts. Given the se-
quence of events, the net inventory at the beginning of period t+1, It+1, can be simply
written as It+1 = It +Ot +Rt −Dt = St +Rt −Dt . Next, the sales quantity at time t
can be written as:

SLt = min{I+t +Ot +Rt ,Dt +Bt}= min{I+t +St − It +Rt ,Dt + I−t }
= min{St +Rt ,Dt}+ I−t ,

(4)

where the first equality follows from the definitions of Ot and Bt and the second
equality follows from the fact that x = x+−x− for any x∈R. Equation (4) formulates
that the sales quantity of period t is the minimum of the inventory on-hand plus the
replenishment order plus the returns received and current period’s demand plus the
backordered demand quantity from the previous period. The second equality follows
as the backordered quantity from the previous period is the negative part of the net
inventory at period t.

At the end of the selling season, which is denoted by period T + 1, any excess
inventory is salvaged at a unit profit of s and any shortage is purchased and delivered
to the customers. Following Porteus (1971), we assume that no fixed cost is charged
for this last order. We account for any returns of the satisfied backorder demand after
the end of the season by including the return cost and the salvage profit due to these
returns. Thus the terminal expected profit could be written as follows:

PT+1(IT+1,SLT ) = p(IT+1)
−+ sERT+1 [(IT+1 +RT+1)

+]− cERT+1 [(IT+1 +RT+1)
−]

−rE[RT+1]+α(s− r)(IT+1)
−

(5)

4 Structure of the Optimal Inventory Policy

In this section, we present some analytical results based on the formulated prob-
lem. First, we provide an alternative cost-centric formulation and show that these
two formulations are equivalent. Next, the structure of the optimal inventory policy
is analyzed utilizing the alternative formulation.

We choose a profit-centric approach in this paper. Alternatively, one could follow
a more traditional cost-centric formulation and study the optimal inventory policy of
the retailer that minimizes total expected cost. Specifically, one could use a dynamic
programming formulation using cost-to-go and terminal cost functions as stated be-
low:

Ct(It ,SLt−1) = min
St>It
{c̄(St − It)+ rE[Rt ]+ J(St ,SLt−1)+EDt ,Rt [Ct+1(It+1,SLt)]},

(6)

CT+1(IT+1,SLT ) = cERT+1 [(IT+1 +RT+1)
−]− sERT+1 [(IT+1 +RT+1)

+]+ rE[RT+1]

+α(r− s)(IT+1)
−

(7)
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Next, we show that these two formulations are basically equivalent.

Proposition 1 Given any state variable pairs It and SLt−1 the profit-to-go and cost-
to-go functions of the two formulations stated in equations (6,7) and (2,5) have the
following relationship:

Pt(It ,SLt−1) = p(µ (T − t +1)+ I−t )−Ct(It ,SLt−1), ∀1≤ t ≤ T. (8)

All the proofs are relegated to appendix. Proposition 1 implies that for each period
t, the profit-to-go function is equal to total revenue from the expected demand during
the remainder of the selling season and any backordered demand from previous peri-
ods less the cost-to-go function for all values of the net inventory and previous period
sales quantity. Hence the optimal ordering decisions are exactly the same under both
formulations for any state variable pairs It and SLt−1. In particular, one can easily
deduce that P1(0,0) = p µ T −C1(0,0). This implies that, due to our assumption of
backordered unmet demand, one could easily find the optimal expected profit by sub-
tracting the optimal expected total cost from the revenue of expected total demand
during the selling season.

The next proposition provides structural results on the optimal inventory policy
for the last period:

Proposition 2 Let K = 0 and c > s. Then the following statements hold:

i) CT (IT ,SLT−1) is submodular on (IT ,−SLT−1).
ii) Let S∗T (IT ,SLT−1) be the set of optimal net inventory after replenishment deci-

sions. Then S∗T (.) is nondecreasing in IT and nonincreasing in SLT−1.

Using Proposition 1 and Proposition 2, it is trivial to show that the following
corollary is true:

Corollary 1 Let K = 0 and c > s. Then the following statements hold:

i) PT (IT ,SLT−1) is supermodular on (IT ,−SLT−1).
ii) Let S∗T (IT ,SLT−1) be the set of optimal net inventory after replenishment deci-

sions in the profit-centric formulation. Then S∗T (.) is nondecreasing in IT and
nonincreasing in SLT−1.

Corollary 1 shows that the optimal net inventory after replenishment is nonde-
creasing in the net beginning inventory and nonincreasing in the sales quantity of
the previous period. The former result is expected given the zero fixed ordering cost
assumption and indestructibility of net inventory. The latter result also holds since a
higher level of sales quantity in the previous period implies a higher number of possi-
ble returns in the current period. This structural result is quite substantial: One could
utilize this result to find the optimal inventory decisions more quickly by narrowing
down the search space using the optimal decisions for adjacent values of the state
variables.

The structural results hold under two assumptions. Nonzero fixed ordering cost
could lead the cost-to-go function to be non-submodular. The assumption of c > s
is satisfied for cases worth studying: Otherwise it is optimal to procure a very large
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quantity in the last period and salvage them at the end of the selling season for profit.
Unfortunately, we could not extend the results to other periods in the selling season,
which requires convexity of the cost-to-go function which may not hold for many
cases. Hence we resort to numerical experiments to analyse the structure of the opti-
mal policy for interim periods under nonzero fixed ordering cost.

5 Computational Results

In this section, we present the results of an extensive numerical study to better un-
derstand and quantify the results of our proposed model. First, we study the structure
of the optimal inventory control policy using the model proposed in Section 3. Then,
we discuss the value of incorporating detailed return flow into the retailer’s inventory
control problem and how the problem parameters affect this value.

We refer to the retailer that uses our proposed model in managing her inventory
as the “return-smart” retailer who keeps detailed records of sales and returns and
considers item returns as dependent on the previous period sales. As a benchmark,
we also consider an alternative retailer who does not track previous period sales ex-
plicitly, ignores the dependency of the return flow on sales and instead simply uses a
net demand approach (i.e., considers only the product demand less the returns). For
this “return-naive” retailer, it is known that the optimal inventory control policy is a
traditional (s,S) policy where an order is given to increase net inventory to S only if
the net inventory is less than or equal to s (see, for example, Porteus 1971).

In this computational study, we assume that the demand for each period follows
Poisson distribution with mean λD. The return-smart retailer considers that each sold
item could be returned in the next period with probability α . On the other hand,
the return-naive retailer simply uses the net demand in managing the inventory. In
our case, one can show that the net demand follows Poisson distribution with mean
(1−α)λD.

For the rest of this paper, we consider a particular parameter set, called the base
case scenario, to study the differences between the inventory control policies and
profits of return-smart and return-naive retailers. Most of the parameters are set fol-
lowing Mitra (2009) which also considers an inventory system with product returns.
The mean of the Poisson distribution is taken as λD = 4 and α = 0.50, hence the
return-naive retailer uses the net demand with mean (1−α)λD = 2. Since the sup-
port of the Poisson distribution is unbounded, we truncate the demand from a level
such that the cumulative probability exceeds 0.9999. We assume that each period
lasts a month and that there are 4 periods in a season (T = 4). Inventory holding cost
rate is taken as 5% per unit per month, b= $20 per unit per month, K = $25 per order,
c = $40 per unit, and p = $80 per unit. We also assume that there is no salvage value
at the end of the period (s = 0) and the customer is given full credit for returns and
any related processing cost is ignored (r = p). In section 5.3, we provide an analysis
on the sensitivity of our results on this base case scenario.
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5.1 Analysis of the Optimal Inventory Control Policy

We calculate the optimal inventory decisions for the return-smart retailer using our
proposed model and also for the return-naive retailer following Porteus (1971). For
the base case scenario, the optimal inventory decisions in period 2 for both types of re-
tailers are presented in Figure 1 given that the previous period sales are equal to zero.
Let’s first compare the form of the optimal policies. As expected, the return-naive
retailer follows an (s,S) policy where she places an order only if the net inventory is
below or equal to 1 (i.e., re-order point s = 1) and increases the inventory to 4 (i.e.,
order-up-to level S = 4). On the other hand, the return-smart retailer does not follow
an (s,S) type inventory policy. She places an order only if the inventory level is be-
low or equal to 4, however the order-up-to level is not constant for all values of the
net inventory. When the net inventory is below zero (i.e., there is positive backorder
from previous periods), the order-up-to level decreases as the number of backorders
increases. This could be seen as counter-intuitive at first sight as the retailer could be
expected to order more especially when the backordered demand is high. However,
the return-smart retailer knows that each fulfilled backordered demand is going to
turn into sales in the current period which then could be returned with probability
α in the next period. Thus she reduces the order size taking into account the higher
number of possible returns from these fulfilled backordered demand. Using the same
logic, the return-smart retailer keeps the order-up-to level constant when there is no
backordered demand as each product in the inventory has to be first sold and then
returned, a lower probability event, in order to be used in fulfilling demand in the
future periods.

Fig. 1: The optimal inventory decisions of return-smart and return-naive retailers for
the base case scenario in period 2 (SL1 = 0)

Comparing the inventory levels below which an inventory order is given, we ob-
serve that the return-smart retailer places an order whenever the net inventory is at or
below 4 which is much smaller for the corresponding threshold with the return-naive
retailer (i.e., 1). This is because the return-smart retailer expects a higher demand rate
of 4 assuming no returns will arrive in period 2 as SL1 = 0. However, the return-naive
retailer ignores the sales-dependency of the returns and expects a lower net demand
rate of 0.5∗4 = 2. This phenomenon also results in the return-naive retailer ordering
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less (4) than the return-smart retailer (7) when she orders and there is no backorder.
Thus we expect the return-naive retailer to have higher backorder costs and higher
fixed order cost due to increased order frequency to compensate for the increased
backorders. We also find similar observations for the order level in the first period:
The return-smart retailer orders 8 units whereas the return-naive retailer orders only
6 units. Later on, whenever the inventory decreases below the re-order point, the
return-naive retailer always orders less compared to the return-smart retailer.

Fig. 2: The optimal inventory levels after ordering of the return-smart retailer for the
base case scenario in period 2

Given the effect of net inventory level on inventory decisions, next we investi-
gate the effect of previous period sales. By definition, the return-naive retailer does
not use this information. For the return-smart retailer, Figure 2 shows the optimal
inventory levels after ordering in period 2 as a function of the net inventory level be-
fore ordering and the previous period sales. In the grey shaded area (bottom right) no
replenishment order is given. In the white area, the return-smart retailer places a pos-
itive replenishment order. For a fixed net inventory level, the order quantity decreases
monotonically in the previous period sales. The amount of returns in the current pe-
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riod increases stochastically in the previous sales quantity; thus the retailer orders
less expecting a larger number of returns.

5.2 Value of Using Sales-Dependent Returns

In this section, we quantify the value of considering sales-dependent returns in mak-
ing inventory decisions. Specifically, we calculate the improvement in the profit of
the return-smart retailer versus the return-naive one. Given the optimal inventory
decisions of both retailers as discussed in the previous subsection, we evaluate the
expected profit of both retailers using the same Monte-Carlo simulation for both.
The Monte-Carlo simulation generates a random demand value for each period in
the horizon and using each retailer’s inventory policy, evaluates the resulting aver-
age total profit across simulation runs. Clearly, the expected profit of the return-smart
retailer is asymptomatically the same if one uses simulation instead of the dynamic
programming model of Section 3. Our dynamic programming formulation could be
used for the return-naive retailer as well, however we specifically employ simulation
to be able to calculate the components of the total profit and better understand the
underlying factors for differences in the profits. To minimize any variation due to the
generated random numbers, we use identical random demand values while running
simulations. Finally, we compare the evaluated total profit of the return-smart retailer
for the whole season to that of the return-naive one, assuming zero initial inventory.
In this subsection, we use the base case scenario parameters and conduct a one-way
sensitivity analysis in the next subsection.

In our Monte Carlo simulation, we determine to use 50,000 samples. After 10
replications, we find that the standard deviation is $0.31(CV = 0.0031), supporting
our choice of the number of samples. Due to our assumption that all backordered
demand is fulfilled, the total revenues of both retailers are exactly the same. On the
other hand, even though both retailers face the same demand realization, they order
according to their separate inventory control policies. Thus they may have different
sales and return quantities in each period and eventually different total profits from
each other.

For the base case scenario, Table 3 provides the total expected profits of both
retailers as well as their cost breakdowns. It has four sections: The first section shows
a breakdown of the total cost during the selling season into procurement, ordering,
holding, and backorder costs. The next section presents the costs incurred after the
selling season ends that include the final purchasing cost of remaining backorders, the
return credits for these fulfilled backorders, the salvage value of on-hand inventory, if
any, after the remaining backorders are fulfilled and the sales revenue of the fulfilled
backorders. The third section displays the net revenue after the returns are credited
from the total revenue during the selling season. Finally, in the last section, we deduct
both total season and end-of-season costs from the net revenue to find the total profit
of each retailer.

Table 3 shows that the return-smart retailer has a significant 23% increase in
profit compared to the return-naive one. The latter retailer has higher costs in all
categories except the holding cost. The underlying reason for this observation stems
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Table 3: Total profit breakdowns for both retailer types using base case scenario

Procurement Ordering Holding Backorder Total Season End-of-Season Season Return Season Net Total
Cost Cost Cost Cost Cost Cost Revenue Credit Revenue Profit

Retailers B1 B2 B3 B4 B=B1+B2+B3+B4 C A1 A2 A=A1-A2 A-B-C
Return-naive 399.32 50.41 12.78 50.85 513.37 113.39 1,182.27 453.03 729.24 102.49
Return-smart 380.69 36.59 17.11 47.23 481.62 98.14 1,163.31 457.09 706.21 126.45

from the optimal inventory decisions studied in the previous subsection: The return-
naive retailer never considers the incoming returns and orders more frequently in
smaller quantities. The total order quantity during the season is also slightly (5%)
higher. However, the timing of these orders is not perfect: We find that she also has
a worse cycle service level (73% vs 76%) and a product fill rate (89% vs 90%)
compared to the return-smart retailer. The return-naive retailer faces more backorders
leading to lower service levels as expected. The return-smart retailer orders fewer
units at the right time since she considers the possible returns and treats them as a
secondary supply source. Moreover, the return-naive retailer has to satisfy a higher
number of backorders at the end of the season and then has to pay for any return
credits associated with these sales without being able to resell.

On a final note, we observe that using the dynamic programming formulation
of Porteus (1971), the return-naive retailer evaluates her optimal profit as $219.38,
which is 114.05% higher than the actual profit ($102.49) she would get under sales-
dependent returns. This level of overestimation would be problematic for many rea-
sons including budget planning. Thus another advantage of our model is the correct
evaluation of the actual profit resulting from a chosen inventory control strategy.

5.3 Sensitivity Analysis

For the base case scenario, we find that the value of incorporating sales-dependent
returns in finding the optimal inventory policy is 23%. In this section, we present a
one-way sensitivity analysis on this value with respect to problem parameters. For
each parameter, we modify the number used in the base case scenario and report the
change in the percentage difference in the retailers’ profits.

Figure 3 provides the results of sensitivity analysis with respect to the fixed order
cost. As expected both retailers’ profits decrease as the fixed cost increases. However,
the decrease in the return-naive retailer’s profit is steeper as this retailer orders more
frequently as compared to the return-smart one. The value of incorporating sales-
dependent returns increases to more than 70% when the fixed cost increases to 50$.

The effect of the backorder cost on the value of incorporating sales-dependent re-
turns is shown in Figure 4. There are two main observations: (1) When the backorder
cost is as low as the holding cost (i.e., h = b = $2), the return-naive retailer places
no order in the first period to save from the fixed order cost. As a result, she does not
sell any products in the first period and loses the opportunity of incoming returns in
the second period. On the other hand, the return-smart retailer places a positive ini-
tial order and uses the returns in the following periods as a second source of supply
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Fig. 3: Value of incorporating sales-dependent returns as the fixed order cost varies

resulting in a 36% profit gap between the two retailers. (2) When the backorder cost
is quite large, the return-naive retailer orders more frequently than necessary to save
from backorder cost. Thus she incurs high fixed order cost and the percentage profit
improvement of incorporating sales-dependent returns could be as high as 70%. For
moderate values of the backorder cost, the percentage profit difference is lower.

Fig. 4: Value of incorporating sales-dependent returns as the backorder cost varies

The significant effect of the return probability is evident from Figure 5 which
shows the percentage change in the retailer’s profit as the return probability (α)
varies. The value of incorporating sales-dependent returns increases monotonically
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with α: With higher values of the return probability, the return-naive retailer chooses
a lower initial order quantity expecting a lower net demand. However, the actual de-
mand is much higher in the first period which leads to high backorder costs, low sales,
and low returns in each period which ends with a loss at the end of the season.

Fig. 5: Value of incorporating sales-dependent returns as the return probability varies

We conduct additional one-way sensitivity analysis for the remaining cost param-
eters and the results are presented in Table 4. As the procurement cost increases, the
percentage improvement in the retailer’s profit reaches 52%. As the profit margin de-
creases with the higher procurement cost, the return-naive retailer has difficulty in
controlling the comparatively higher fixed order costs. Since the total holding cost is
the lowest cost category (see Table 3), the percentage improvement in the retailer’s
profit varies only slightly as the holding cost rate increases from 0.5% to 4%. Finally,
we find that the percentage improvement decreases with the salvage value. However,
the return-smart retailer’s profit is still 4% higher than the return-naive retailer even
when the salvage value is the same as the procurement cost.

Table 4: The percentage improvement in the retailer’s profit as procurement cost,
holding cost and salvage value parameters vary

Parameter Instance Set Min Med Max
Procurement unit cost [10,15,...,45] 3% 10% 52%
Holding cost [1%,2%,...,6%] 23% 27% 29%
Salvage value [0,10,...,40] 4% 15% 23%
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In this paper, we consider a profit-centric approach while determining the order-
ing decisions. Yet, the resulting service levels could be a separate concern for the
retailer. Table 5 shows the percentage difference in the cycle service level and the
product fill rate as the problem parameters vary. The percentage differences in both
service level measures are most sensitive to the backorder cost as expected from our
earlier results. Moreover, the return-naive retailer has better service levels (i.e., the
percentage difference is negative) when α ≤ 0.2 at the expense of higher costs, but
both the service level and the profit is smaller for larger values of the return probabil-
ity.

Table 5: The percentage difference in the service levels as the problem parameters
vary

Type I Type II
Parameter Instance Min Med Max Min Med Max
Procurement unit cost [10,15,...,45] 3% 6% 7% 1% 1% 2%
Holding cost [1%,2%,...,6%] 5% 6% 11% 1% 1% 3%
Backorder cost [8,14,...,50] 3% 6% 19% 0% 1% 6%
Fixed order cost [10,15,...,50] 2% 8% 9% 0% 2% 2%
Return probability [10%,20%,...,60%] -1% 3% 13% -1% 1% 3%
Salvage value [0,10,...,40] 4% 6% 7% 1% 1% 2%

6 Extension: Lost Sales Case

Our main formulation introduced in Section 3 assumes that unmet demand is back-
ordered in line with most of the related literature in this field. For online sales, this
assumption is even more plausible (see, for example, Mahar and Wright 2009, Bret-
thauer et al. 2010, and Mahar et al. 2012). However, an alternative assumption would
be to assume that any unmet demand is lost (see references in Table 1). Hence in this
section, we revisit our research question under the lost sales assumption.

Under the lost sales assumption, the transition of the state variable comprising of
the net inventory at the start of period t +1 and the previous sales quantity at period
t +1 could be written as follows:

It+1 = (St +Rt −Dt)
+ (9)

SLt = min{St +Rt ,Dt} (10)

The profit-to-go functions of the dynamic programming formulation also require
some modifications. First, expected unmet demand should be multiplied by the lost
sales cost. For our base case scenario, we assume that the lost sales cost is zero to
focus on the effect of losing sales revenue. Moreover, the terminal profit function is
also modified such that it includes only the salvage value of the ending inventory and
the credits issued for the returns of the products sold in the last period.
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After an analysis of the optimal ordering decisions of both retailers under the base
case scenario, we find that the return-smart retailer now follows an (s, S) inventory
policy as well. The (s,S) values of the return-smart retailer depend on the previous
sales quantity since she considers the return flow as a second source of supply and
decreases its orders as the previous period sales increase. During period 2, she follows
a (3,6) inventory policy when SL1 = 0 but switches to using a (1,4) inventory policy
when SL1 ∈ {3,4}. Similar to our findings with the main model, we find that the
return-naive retailer orders fewer quantities compared to the return-smart retailer. For
example, she uses a (2,5) inventory policy in the second period. Comparing with the
main model, the return-naive retailer has higher (s,S) values under lost sales setting,
pointing towards a possible reason for lower profit.

Under the lost sales assumption, the return-smart retailer’s profit is 56% higher
using the base case scenario as shown in Table 6. Compared to the 23% profit im-
provement under the backordered demand setting, we conclude that the value of in-
corporating sales-dependent returns is higher if unmet demand is lost. Notice that the
return-naive retailer has a higher revenue, but the increase in costs more than offsets
the increase in the revenue. On average the return-naive retailer orders twice, whereas
the return-smart retailer only orders in the initial period. In addition, the return-naive
retailer also orders more units (10) than the return-smart retailer (8) on average. Since
the salvage cost is zero, excess inventory at the end of the selling season is worthless.

Table 6: Total profit breakdowns for both retailer types using the base case scenario
and the lost sales assumption

Procurement Ordering Holding Total Season End-of-Season Season Return Season Net Total
Cost Cost Cost Cost Cost Revenue Credit Revenue Profit

Retailers B1 B2 B3 B=B1+B2+B3 C A1 A2 A=A1-A2 A-B-C
Return-naive 407.12 55.46 16.74 479.32 130.44 1,154.63 446.86 707.77 98.01
Return-smart 321.42 25.29 16.01 362.73 87.18 1,031.92 428.91 603.01 153.11

Table 7 shows the results of the one-way sensitivity analysis on the retailer’s per-
centage improvement in profit as the problem parameters vary from the base case
scenario. The percentage improvement increases with the procurement unit cost, the
holding cost rate, the fixed ordering cost, the return probability and decreases with
the salvage value. Compared with the results for the backordered demand setting in
Section 4.3, there is a significant increase in the variation of the percentage improve-
ment.

Finally, we investigate the effect of a positive lost sales cost on the percentage
profit improvement and present the results in Figure 6. As the lost sales cost increases
moderately from zero, the return-smart retailer slightly increases her order frequency
and orders in some periods in addition to the initial one. Thus the profit gap between
the retailers decreases. When the lost sales cost is very high, however, the return-naive
retailer increases order frequency even more to not incur high lost sales cost. The
return-smart retailer does not react drastically as she acknowledges possible returns
in the subsequent periods. Thus the percentage improvement increases again to more
than 70% when the lost sales cost is $40.
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Table 7: The percentage improvement in the retailer’s profit as the problem parame-
ters vary assuming unmet demand is lost

Parameter Instance Min Med Max
Procurement unit cost [10,15,...,45] 4% 14% 128%
Holding cost [1%,2%,...,6%] 39% 48% 60%
Fixed order cost [10,15,...,50] 23% 44% 71%
Return probability [10%,20%,...,60%] 0% 12% 126%
Salvage value [0,10,...,40] 3% 17% 56%

Fig. 6: Value of incorporating sales-dependent returns as the lost sales cost varies

7 Conclusions

We consider the optimal ordering decisions of a return-smart retailer who faces ran-
dom returns that depend on previous sales in a finite horizon problem. Using dynamic
programming formulation, we search for the best periodic review inventory policy to
maximize the expected revenue less the total cost of procurement, ordering, holding,
salvage and backorder. Next, we evaluate the optimal expected profit of the return-
naive retailer which ignores the dependency of returns on previous sales and simply
uses a net demand approach to find her optimal ordering decisions. Comparing the
profits of these two retailers quantifies the value of incorporating previous sales on
product returns.

Using the base case scenario, we find that the return-smart retailer could obtain a
23% higher profit as compared to the return-naive one. Our sensitivity analysis on the
various problem parameters shows that this value could be much higher especially
when the fixed ordering cost is high, the backorder cost is very small or high, the
return probability is high or the procurement unit cost is high. These documented
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benefits result as the return-smart retailer uses the returns as a second source of supply
and thus limits her order frequency and backorders.

Our results highlight the additional benefit of using return information in planning
a retailer’s inventory. However, our model requires estimates for the actual demand as
well as the return probability which, in turn, requires firms to hold separate meticu-
lous records of both product sales and returns. This requirement could be costly from
information technology and labor points of view which is not modeled explicitly in
this paper. Moreover, product return process flows should be redesigned to collect this
additional information. Our results highlight when and if incurring these additional
costs are worthwhile for the retailer.

Customers increasingly opt to return products and with the higher share of e-
commerce channel sales, the product return rates are rising above 30−50% in some
categories. Due to the Covid-19 pandemic, even more offline sales are substituted by
online sales, thus subject to higher return rates. The model presented in this paper
is especially important for these retailers who face increasingly number of returned
products.

In the retail sector, leftover inventory after the selling season ends mostly don’t
have a salvage value due to rapid trend changes or seasonal reasons. Hence they could
be a costly burden for the firm even after markdown sales and could eventually end
up in a landfill. According to Constable (2019), five billion pounds of returned goods
end up in the US landfills each year and this landfill waste from returns alone con-
tributes 15 million metric tons of carbon dioxide to the atmosphere. Our model that
incorporates sales-dependent returns into inventory management decisions results in
less leftover inventory (62% in backorder setting and 87% in the lost sales setting)
compared to a model that ignores this dependency. Thus our model could indirectly
lower the environmental impact of a retailer by limiting landfill waste.

Our work could be extended along several lines. While we focus on the sales-
dependency of returns, another alternative is to model the periods in a finer granular-
ity and allow for product return from multiple previous periods with possibly different
return rates. Especially with online sales, customers inform retailers about their in-
tended return by filling out an online form. Thus further research could investigate
how this advanced return information could be used to manage returns more effec-
tively. Finally, omnichannel extensions with different and possibly correlated return
flows should be studied to expand our understanding of this problem which is here to
stay.
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Appendix

Proof of Proposition 1: We will complete the proof in two steps. First, we will show
that the claim of the proposition holds for t = T . Next, we will show that the claim
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holds for t−1, assuming it holds for t. These two steps ensures that the claim holds
∀1≤ t ≤ T .

Step 1: Using the transition of the state variables IT+1 and SLT , we can rewrite
the profit-to-go function for period T multiplied by −1 as follows:

−PT (IT ,SLT−1) = min
ST>IT

{c̄(ST − IT )+ rE[RT ]+ J(ST ,SLT−1)−EDT ,RT [PT+1(IT+1,SLT )]

− pEDT ,RT [SLT ]}
= min

ST>IT
{c̄(ST − IT )+ r α SLT−1 +hEDT ,RT [(ST +RT −DT )

+]+bEDT ,RT [(DT −ST −RT )
+]

− EDT ,RT [PT+1(ST +RT −DT ,min{ST +RT ,DT}+ I−T )]

− pEDT ,RT [min{ST +RT ,DT}+ I−T ]}

Replacing the terminal profit function with equation (5) and using the expectation
of the binomial distribution, one can further expand PT (IT ,SLT−1) as:

−PT (IT ,SLT−1) = min
ST>IT

{c̄(ST − IT )+ r α SLT−1 +hEDT ,RT [(ST +RT −DT )
+]+bEDT ,RT [(DT −ST −RT )

+]

+ c EDT ,RT ,RT+1 [(ST +RT −DT +RT+1)
−]− s EDT ,RT ,RT+1 [(ST +RT −DT +RT+1)

+]

+ rα EDT ,RT [min{ST +RT ,DT}+ I−T ]−α(s− r)EDT ,RT [(ST +RT −DT )
−]

− pEDT ,RT [(ST +RT −DT )
−+min{ST +RT ,DT}+ I−T ]}

(11)

Following similar steps, one could also expand the cost-to-go function for period T
as follows:

CT (IT ,SLT−1) = min
ST>IT

{c̄(ST − IT )+ r α SLT−1 +hEDT ,RT [(ST +RT −DT )
+]+bEDT ,RT [(DT −ST −RT )

+]

+ c EDT ,RT ,RT+1 [(ST +RT −DT +RT+1)
−]− s EDT ,RT ,RT+1 [(ST +RT −DT +RT+1)

+]

+ rα EDT ,RT [min{ST +RT ,DT}+ I−T ]+α (r− s)(ST +RT −DT )
−}

(12)

Let’s define

fT (ST , IT ,SLT−1) :=c̄(ST − IT )+ r α SLT−1 +hEDT ,RT [(ST +RT −DT )
+]+bEDT ,RT [(DT −ST −RT )

+]

+ c EDT ,RT ,RT+1 [(ST +RT −DT +RT+1)
−]− s EDT ,RT ,RT+1 [(ST +RT −DT +RT+1)

+]

+ rα EDT ,RT [min{ST +RT ,DT}+ I−T ]+α (r− s)(ST +RT −DT )
−.

(13)

Notice that

(ST +RT−DT )
−+min{ST +RT ,DT}=−min{ST +RT−DT ,0}+min{ST +RT ,DT}=DT .

(14)
Hence equation (11) could be rewritten as:

−PT (IT ,SLT−1) = min
ST>IT

{ fT (ST , IT ,SLT−1)− pEDT ,RT [DT + I−T ]}

= min
ST>IT

{ fT (ST , IT ,SLT−1)}− p(µ + I−T ) =CT (IT ,SLT−1)− p(µ + I−T ),

(15)
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where the first equality follows from the fact that the second term inside the minimiza-
tion function does not depend on the decision variable ST and the second equality uses
the expanded form for the cost-to-go function in equation (12). Thus completing the
proof that the claim of the proposition holds for t = T .

Step 2: Next we are going to show that the claim holds for period t−1 assuming
it holds for period t. In other words assume that the following is true for all It and
SLt−1:

Pt(It ,SLt−1) = p(µ (T − t +1)+ I−t )−Ct(It ,SLt−1).

Using this assumption, one could write the profit-to-go function for period t− 1
as:

−Pt−1(It−1,SLt−2) = min
St−1>It−1

{c̄(St−1− It−1)+ r α SLt−2 +hEDt−1,Rt−1 [(St−1 +Rt−1−Dt−1)
+]

+bEDt−1,Rt−1 [(Dt−1−St−1−Rt−1)
+]+EDt−1,Rt−1 [Ct(It ,SLt−1)]

− pEDt−1,Rt−1 [µ (T − t +1)+ I−t ]− pEDt−1,Rt−1 [min{St +Rt ,Dt}+ I−t ]}
(16)

The cost-to-go function for period t−1 is:

Ct−1(It−1,SLt−2) = min
St−1>It−1

{ ft−1(St−1, It−1,SLt−2)}, (17)

where

ft−1(St−1, It−1,SLt−2) :=c̄(St−1− It−1)+ r α SLt−2 +hEDt−1,Rt−1 [(St−1 +Rt−1−Dt−1)
+]

+bEDt−1,Rt−1 [(Dt−1−St−1−Rt−1)
+]+EDt−1,Rt−1 [Ct(It ,SLt−1)].

(18)

Now, using the last two equalities and recalling that It = St +Rt −Dt , equation
(16) could be rewritten as:

−Pt−1(It−1,SLt−2) = min
St−1>It−1

{ ft−1(St−1, It−1,SLt−2)

− p(µ(T − t +1)+EDt−1,Rt−1 [(St +Rt −Dt)
−+min{St +Rt ,Dt}+ I−t ])}

= min
St−1>It−1

{ ft−1(St−1, It−1,SLt−2)− p(µ(T − t +1)+EDt−1,Rt−1 [Dt + I−t ])}

= min
St−1>It−1

{ ft−1(St−1, It−1,SLt−2)}− p(µ(T − t +2)+ I−t )

=Ct−1(It−1,SLt−2)− p(µ(T − t +2)+ I−t ),

where the third to last equality follows using an equivalent version of equation (14)
for period t, and the second to last equality follows as the second part of the mini-
mization function does not depend on the decision variable St−1, and the last equality
is by equation (17). Thus we complete the proof that the claim of the proposition
holds for period t−1, assuming it holds for period t.

Lemma 1 Let Ct denote the set of feasible states and actions:

Ct := {(It ,−SLt−1,St) | It ∈ Z,SLt−1 ∈ Z+,St > It}.
Then Ct is a lattice.
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Proof of Lemma 1: Let x1
t , x2

t be elements of Ct .
Consider

x1
t ∧ x2

t := (min(I1
t , I

2
t ), min(−SL1

t−1,−SL2
t−1), min(S1

t ,S
2
t )).

Clearly min(I1
t , I

2
t ) ∈ Z and min(−SL1

t−1,−SL2
t−1) ∈ Z+.

Moreover, we know that S1
t > I1

t and S2
t > I2

t .
Thus min(S1

t ,S
2
t )> min(I1

t , I
2
t ), which implies that x1

t ∧ x2
t ∈ Ct .

Next, consider

x1
t ∨ x2

t := (max(I1
t , I

2
t ), max(−SL1

t−1,−SL2
t−1), max(S1

t ,S
2
t )).

Now, max(I1
t , I

2
t ) ∈ Z and max(−SL1

t−1,−SL2
t−1) ∈ Z+.

Also, one can conclude that max(S1
t ,S

2
t ) > max(I1

t , I
2
t ), implying x1

t ∨ x2
t ∈ Ct . Since

both x1
t ∧ x2

t and x1
t ∨ x2

t are elements of Ct , we can conclude that Ct is a lattice.

Proof of Proposition 2:
We first rewrite the cost-to-go function using equations (3), (4), (6), and (7):

CT (IT ,SLT−1) = min
ST>IT

{c̄(ST − IT )+ r α SLT−1 +h EDT ,RT [(ST +RT −DT )
+]+bEDT ,RT [(DT −ST −RT )

+]

+ c EDT ,RT ,RT+1 [(ST +RT −DT +RT+1)
−]− s EDT ,RT ,RT+1 [(ST +RT −DT +RT+1)

+]

+ rα EDT ,RT [min{ST +RT ,DT}+ I−T ]−α(s− r)EDT ,RT [(ST +RT −DT )
−]}

= min
ST>IT

{c̄(ST − IT )+ r α SLT−1 +(h+b) EDT ,RT [(ST +RT −DT )
+]+b(µ−ST −αSLT−1)

+(c− s) EDT ,RT ,RT+1 [(ST +RT −DT +RT+1)
+]− c EDT ,RT ,RT+1 [(ST +RT −DT +RT+1)]

+ rα EDT ,RT [min{ST +RT ,DT}+ I−T ]−α(s− r)EDT ,RT [(ST +RT −DT )
−]}

where the last equality follows from using the equation (−a)+ = a− = a+−a for any
a ∈ R.
Now, we derive a set of useful equalities.

(i)

E[RT+1] = EDT ,RT [E[RT+1|DT ,RT ]] =EDT ,RT [α(min{ST +RT ,DT}+ I−T )]

= α EDT ,RT [ST +RT − (ST +RT −DT )
++ I−T ]

= αST +α
2SLT−1−α EDT ,RT [(ST +RT −DT )

+]+αI−T

(ii)

EDT ,RT [min{ST +RT ,DT}+ I−T ] = ST +αSLT−1−EDT ,RT [(ST +RT −DT )
+]+ I−T

(iii)

EDT ,RT [(ST +RT −DT )
−] = EDT ,RT [(ST +RT −DT )

+]−ST −αSLT−1 +µ
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Using (i)-(iii) and rearranging terms gives us:

CT (IT ,SLT−1) = max
ST>IT

{µ(b+ c−α(s− r))+ I−T α(r− c)

+ c̄(ST − IT )−ST (b+(1+α)c−αs)

+αSLT−1(r−b− c(1+α)+αs)

+(h+b+α(c− s))EDT ,RT [(ST +RT −DT )
+]

+ (c− s)EDT ,RT ,RT+1 [(ST +RT +RT+1−DT )
+]}

:= max
ST>IT

{C̃T (IT ,SLT−1,ST )}

Now, we would like to show that C̃T (IT ,SLT−1,ST ) is submodular on CT . In order
to show that, let x1

T := (I1
T ,−SL1

T−1,S
1
T ) and x2

T := (I2
T ,−SL2

T−1,S
2
T ) be elements of

CT . We need to prove that:

C̃T (x1
T )+C̃T (x2

T )> C̃T (x1
T ∧ x2

T )+C̃T (x1
T ∨ x2

T ). (19)

Define WT (xT ) := EDT ,RT [(ST +RT −DT )
+] and YT (xT ) := EDT ,RT ,RT+1 [(ST +

RT +RT+1−DT )
+] where xT ∈ CT and RT ∼ Bin(SLT−1,α). Using the definition of

C̃T (.) and the fact that y+ z = min(y,z)+max(y,z) ∀y,z ∈ R, rearranging the terms
of inequality (19) gives us:

c̄(S1
T − I1

T )+ c̄(S2
T − I2

T )+(h+b+αc−αs)(WT (x1
T )+WT (x2

T ))

+(c− s)(YT (x1
T )+YT (x2

T ))> c̄(min(S1
T ,S

2
T )−min(I1

T , I
2
T ))

c̄(max(S1
T ,S

2
T )−max(I1

T , I
2
T ))+(h+b+α(c− s))(WT (x1

T ∧ x2
T )+WT (x1

T ∨ x2
T ))

+(c− s)(YT (x1
T ∧ x2

T )+YT (x1
T ∨ x2

T )).

(20)

Part 1: Without loss of generality, assume that S1
T 6 S2

T . If −SL1
T−1 6 −SL2

T−1,
then WT (x1

T ∧ x2
T ) = WT (x1

T ) and WT (x1
T ∨ x2

T ) = WT (x2
T ). Thus WT (x1

T )+WT (x2
T ) >

WT (x1
T ∧ x2

T )+WT (x1
T ∨ x2

T ).
Otherwise WT (x1

T ∧x2
T )=EDT ,R1

T
[(S1

T +R2
T−DT )

+] and WT (x1
T ∨x2

T )=EDT ,R2
T
[(S2

T +

R1
T −DT )

+] where Ri
T ∼ Bin(SLi

T−1,α). Using Klenke and Mattner (2010), since
SL1

T−1 6 SL2
T−1, we conclude that R2

T dominates R1
T under first-order stochastic dom-

inance (FSD).

Consider uT (x) := EDT [(S
2
T +x−DT )

+− (S1
T +x−DT )

+]. Since S1
T 6 S2

T , uT (x)
is a non-decreasing function. Thus, by Milne and Neave (1994), we can deduce that

EDT ,R2
T
[(S2

T +R2
T −DT )

1− (S1
T +R2

T −DT )
+]> EDT ,R1

T
[(S2

T +R1
T −DT )

1− (S1
T +R1

T −DT )
+]

which implies that WT (x2
T )+WT (x1

T )>WT (x1
T ∧ x2

T )+WT (x1
T ∨ x2

T ).
Part 2: Following similar steps of part 1, we now show that

YT (x2
T )+YT (x1

T )> YT (x1
T ∧ x2

T )+YT (x1
T ∨ x2

T ).
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Again, without loss of generality, assume that S1
T 6 S2

T .
The case with−SL1

T−1 6−SL2
T−1 is obvious. For SL1

T−1 6 SL2
T−1, let Ri

T+1(x)∼
Bin({Si

T + x,DT}+ I−T ,α) for any x ∈ Z+. Define

VT (x) := EDT ,R2
T+1

[(S2
T + x+R2

T+1(x)−DT )
+|x]−EDT ,R1

T+1
[(S1

T + x+R1
T+1(x)−DT )

+|x]

Since S1
T 6 S2

T , R2
T+1(x) dominates R1

T+1(x) under FSD for any x ∈ Z+. Thus it is
trivial to see that VT (x) is a non-decreasing function. Also recalling that R2

T dominates
R1

T under FSD leads to ER2
T
[VT (R2

T )]> ER1
T
[VT (R1

T )] which further implies that:

ER2
T
[EDT ,R2

T+1
[(S2

T +R2
T +R2

T+1(R
2
T )−DT )

+|R2
T ]]−ER2

T
[EDT ,R1

T+1
[(S1

T +R2
T +R1

T+1(R
2
T )−DT )

+|R2
T ]]

> ER1
T
[EDT ,R2

T+1
[(S2

T +R1
T +R2

T+1(R
1
T )−DT )

+|R1
T ]]−ER1

T
[EDT ,R1

T+1
[(S1

T +R1
T +R1

T+1(R
1
T )−DT )

+|R1
T ]]

thus showing that YT (x2
T )+YT (x1

T )> YT (x1
T ∧ x2

T )+YT (x1
T ∨ x2

T ).
Using the results obtained in parts 1 and 2, and recalling the assumptions that

K = 0 and c > s, we can conclude that inequality (20) holds completing the proof
that C̃T (IT ,SLT−1,ST ) is submodular on CT .

Following Topkis (1998), we can thus deduce that the set of optimal net inven-
tory after replenishment decisions, S∗T (IT ,SLT−1), is non-decreasing in IT and non-
increasing in SLT−1 by definition of CT in Lemma 1. Moreover, preservation of sub-
modularity under minimization (see, Topkis 1978) implies that CT (IT ,SLT−1) is also
submodular on (IT ,−SLT−1).
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