Introduction to

Smart contracts, Web 3.0

DApps development (2024) v1.0 |

Dr. Enis KARAARSLAN

MSKU Department of Computer Engineering

Digital Technologies and Cyber Security Lab
o o https://linktr.ee/eniskaraarslan

INDEX

O Deterministic Programming

@ Smart Contracts

@ Development Env.
@ Deploy & Test Env.

O Web 3.0 & DApps

@ DApps Implementation

| used ChatGPT to enhance my These slides are made for
previous slides. Napkin Al is “Decentralized systems &
used to draw some of the applications” class.
diagrams

Dr. Enis Karaarslan made the Free to distribute the
formatting of the content, content
screenshots and code

Dr. EniS implementations
KARAARSLAN

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Smart Contracts

ONE

Smart contracts ...

Deterministic Programming: Key Concept
for Blockchain & Smart Contracts

e Definition: Deterministic programming is a programming paradigm where
the output of a function or process is entirely determined by its inputs,
with no randomness or hidden states.

Importance in Blockchain: In decentralized networks like Ethereum,

nodes must reach consensus on the state of the blockchain.

This is only possible if every transaction and computation leads to the

same result on every node.
A function that adds two numbers, f(x, y) = x +y, will always return the

same result given the same inputs. This is deterministic.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Deterministic vs. Non-Deterministic
@ Programming

Deterministic Non-Deterministic

Output is predictable, based only on input Output can vary, even with the same input

Used in blockchains and smart contracts Used in machine learning, games, simulations

Consensus requires all nodes to compute the same result Different results may occur due to randomness

Why Deterministic Matters:
In smart contracts, every node in the network runs the same contract
code and must arrive at the same result to ensure consistency across the

decentralized ledger.

How Deterministic Programming
@ Relates to Smart Contracts

e Smart Contracts: Programs that run on the blockchain, where the outcome of the
contract must be consistent across all nodes.
Deterministic Requirement: Smart contracts cannot have random elements or
external states that could differ across nodes.

Real-World Example: If a smart contract for a decentralized lottery uses

randomness from a local machine, the result would differ on each node, breaking

consensus.

function calculateSum(uint256 x, uint256 y) public pure returns (uint256) {

return x + y; // Deterministic behavior: same input -> same output

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Avoiding Non-Determinism in Smart
Contracts

Time-Based Functions: Using block.timestamp for randomness can be

problematic.

Accessing External APIs: Data from outside the blockchain (via oracles) can

differ between nodes.
Machine-Specific Variables: Variables that depend on the local

environment, such as msg.sender or msg.value, should be used cautiously.

Solution: Always use on-chain or deterministic sources of data and avoid any

code that could introduce inconsistencies across nodes.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Ensuring Determinism in Solidity

Pure Functions: Functions that have no side effects and whose output depends

only on the input.

No Randomness: Use deterministic mechanisms, such as block hashes, but

ensure they don’t compromise security.

State Changes and Consensus: Ensure that all state changes are deterministic

and do not rely on external data that can change between nodes.

function getBlockHash (uint256 blockNumber) public view returns (bytes32)
return blockhash (blockNumber); // Deterministic: all nodes agree on
the same blockhash

}

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Trust and Security through
) @ Determinism

Verifiability: Anyone can check the correctness of a smart contract by knowing
that its behavior will be the same on all nodes.
Security: By ensuring that smart contracts are deterministic, developers avoid
vulnerabilities caused by different outcomes.
Finality: Deterministic smart contracts provide predictable results, ensuring
finality in blockchain transactions.

Key Takeaway: Deterministic behavior is at the core of blockchain's promise of

trustlessness and decentralization.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Determinism in Smart Contract
@ Best Practices

e Follow Solidity’s Best Practices:
o Use pure and view functions where applicable.
o Avoid relying on block timestamps for critical logic.

o Ensure contract logic is consistent across all nodes by using on-chain

data sources.
® Gas Efficiency and Determinism:

o Deterministic functions tend to be more gas-efficient as they avoid

external data calls and complicated logic.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Summary: The Role of Deterministic
Programming in Smart Contracts

e Ensures Consensus: All nodes in the blockchain must arrive at the same
result.

e Prevents Bugs: Avoids issues caused by unpredictable behavior.

e Enhances Security: No room for different outcomes, ensuring the integrity

of smart contracts.

Final Point: Without deterministic programming, blockchain and smart contracts

could not function as a reliable, trustless system.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Smart Contracts

Smart Contracts

@ Introduction to Smart Contracts

What are Smart Contracts?

® Smart contracts are self-executing contracts with the terms of the agreement

directly written into code.

e Operate on decentralized networks, typically blockchain (e.g., Ethereum).

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Smart Contract to Automate ...

Self-Executing Smart Contracts on Blockchain

Assume Alice
. Buy/Sell

BOb & A||Ce X Carlsijo(ranes

Dec@es > - Marriage/

to Divorce Decrees L

Will/Property
Settlements

and there is
“prenuptial - et
agreement”

Trading & ‘ :
Investments

RECORDSK EEPER

@ How Smart Contracts Work

Key Features:

e Autonomous: No need for intermediaries

e Immutable: Once deployed, they cannot be altered.
e Transparent: Anyone can verify the contract’s code.
Execution Example:

"If X happens, then execute Y automatically."

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

How does a

Smart Contract Work?

¥ a
v iR
v

Identify Agreement Set conditions Code business logic

Multiple parties Identify Smart contracts are A computer program
the cooperative opportunity executed automatically Is written
and desired outcomes. when certain conditions
are met.

2P | o
”~ o
Encryption and blockchain
technology

All the nodes on the The code Is executed and Encryption provides a secure
network update thelr ledger. outcomes are memorlalized. transfer of messages between parties,

Network updates Execution and processing

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Operation of Smart Contracts
p

Blockchain

2

e s | Smactcontmcnsact]ivated:I3
the system and : : when conditions
examine the records : : are satisfied *

a

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Basic Structure of a Smart
Contract

e (Components:

O

O

Functions
Events
State variables

(store data)

',@"@ Q\Q /@Home

pragma solidity ”*0.8.90;

1

contract SimpleContract {
uint public balance;

function deposit(uint amount) public { B infinite gas
balance += amount;

function withdraw(uint amount) public { B infinite gas
(balance >= amount, "Insufficient balance");

balance -= amount;

O

Example Use Case: Escrow
Service

® Problem:
Buyer and seller don’t

trust each other.

e Smart Contract Solution:

Funds are locked in the
contract until the buyer
confirms receipt of

goods.

contract Escrow {
address public buyer;
address public seller;
uint public amount;

constructor(address _buyer, address _seller) payable { B infinite gas
buyer = _buyer;
seller = seller;
amount .value;

function confirmDelivery() public { B infinite gas
.sender == buyer, "Only buyer can confirm”);

payable(seller).transfer(amount);

@ Benefits of Smart Contracts

Efficiency: Automated execution reduces

delays.

Security: Blockchain ensures data integrity.

Cost-effective: No need for third-party

intermediaries.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Challenges of Smart Contracts

e Coding Bugs: If a contract has a bug, it can lead to significant losses.
® Legal Uncertainty: Lack of regulation in some jurisdictions.

e Immutability Issues: Mistakes can’t be corrected after deployment.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Section conclusion

Smart contracts are revolutionizing industries by increasing transparency, security,
and efficiency. Such as:
o Decentralized Finance (DeFi): Smart contracts are used for lending, borrowing,

and trading without banks.

o Supply Chain Management: Track goods from production to delivery.

However, they must be carefully written to avoid bugs and exploitations. For a

reference, see [1]

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

O Development

THREE

Development

@ Development

e Write the code

Blockchain

e Deploy it on a test network | Partios intoract with
- smart contract

e Test and debug

Authorities can follow Smmcwadismﬂed:l;
the system and ; : when conditions
examine the records : } are satisfied *

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Development Environments

Development
Environments for Smart

Contracts - Overview

Brownie

Foundry

Description

Web-based IDE with an in-browser compiler for
Solidity smart contract development. No

installation required.

Development environment for compiling, testing,
and deploying smart contracts. Provides
advanced debugging and local blockchain

simulation.

Comprehensive development framework with

testing, compiling, and deployment features.
Integrates with Ganache for local blockchain

development.

Python-based framework for smart contract
development with built-in testing and

deployment tools.

High-performance smart contract development

framework with a focus on speed and simplicity.

Best Use Cases

Quick prototyping,
educational purposes,

testing simple contracts

Large-scale projects,
debugging, simulation,

automation

Enterprise-grade projects,
working with complex

DApps

Python developers,
complex scripting, DeFi

protocols

Low-latency testing,
scripting, high-
performance

development

Languages

Supported

Solidity

Solidity,
Vyper

Solidity,
Vyper

Solidity,
Vyper

Solidity, Yul

@ Features Comparison

Development

Environments

for Smart Contracts

Features

Hardhat

Brownie

Foundry

Deployment Options

Direct deployment to public testnets or
local environments via plugins (e.g.,
MetaMask).

Supports deployment to local (via

Hardhat Network) and public testnets/

mainnets. Custom scripts for deployment.

Integrated deployment tools for local,

testnet, and mainnet deployments.

Built-in deployment to public testnets/
mainnets with simple command-line

interface.

Deployment to local blockchains,
testnets, and mainnets with minimal

configuration.

Local Blockchain Support

Uses Ganache or connected
testnets (via browser

extension).

Hardhat Network for local
development, integrates

with Ganache

Ganache integration for

local blockchain simulation

Supports Ganache,
Ethereum mainnet, and

other local networks

Foundry’s native testnet
tools and local blockchain

support

Testing Framework

Limited built-in
testing (JavaScript)

Mocha, Chai for unit
testing

Mocha, Chai, and
built-in testing
utilities

PyTest integration,

in-depth contract

testing

Forge-based testing

suite

Development

Environments

for Smart Contracts

Features

Truffle

Brownie

Foundry

Debugging Tools

In-browser debugger with
transaction logs, event outputs, and

state analysis.

Advanced debugging with Hardhat
console and network logs, stack

traces, and error mapping.

Debugger included with transaction
tracing, variable inspection, and call

tracing.

Integrated debugger with state

inspection and reverts analysis.

Minimalistic debugger with efficient

error tracing.

Gas Usage Analysis

No in-depth analysis,

requires plugins.

Built-in gas profiler for

analysis.

Integrates with plugins for
gas analysis (like

GasReporter).

In-depth gas profiling

tools available.

Advanced gas

optimization tools.

Community Support &

Resources

Large community,
frequently updated

tutorials

Growing community,

extensive documentation

Established and large

ecosystem.

Active community, popular

among Python users

New but rapidly growing
community, focused on

speed

(& 25 remix.ethereum.org/#lang=en&optimize="false&runs=200&evmVersion=null&version=soljson-v0.8.26 + commit.8a97fa7a.js

FILE EXPLORER

= WORKSPACES

default_workspace

DO&SBODO@ @
B deps
contracts
scripts
tests
prettierrcjson
README.txt

Initialize as git repo

/>

&9 Sign in
3

Q Q T Home X

REMIX &

The Native IDE for Web3 Development.
Website Remix Desktop

Search Documentation
Explore. Prototype. Create.

Start Coding ZK Semaphore ERC20

Uniswap V4 Hooks NFT / ERC721

MultiSig

Recent Workspaces

default workspace

Files

D New & Open ©) Gist &3 Clone

E3 Connect to Local Filesystem

web3.js
ethers.js
sol-gpt <your Solidity question here>

Type the library name to see available commands.

oOX@erM

Featured

Featured Plugins

|~

SOLIDITY ANALYZERS

Analyze your code using Remix,
Solhint and Slither.

v

@ Did you know? You can use 'Generate documentation' in the right-click menu to get Al-generated documentation.

v0.56.0 RELEASE HIGHLIGHTS

o Added new 'Contract Verification' plugin to verify contract
on multiple platforms

o Added new 'Remix Guide' plugin to learn using Remix IDE
using videos

o Added support for message signing using EIP712

Read More

as =

LEARNETH TUTORIALS

Learn about Remix, Solidity, and
other Web3 projects.

COOKBOOK

Find smart contracts, solidity
libraries, and discover protocols.

v

Q Filter with transaction hash or address

RemixAl Copilot (enabled)

()

@ Remix + GitHub

Connect to GitHub Account

SETUP REQUIRED

To ensure that your commits are properly attributed in Git,
you need to configure a username and email address or

connect to GitHub. These credentials will be used to identify

the author of the commit. Setup git

INITIALIZE
Initialize repository

» CLONE

¥ GITHUB SETUP

CONNECT TO GITHUB

© Login with GitHub

GitHub token (optional

QQ T3 Home X

REMIX® oxoem

The Native IDE for Web3 Development.

Website Remix Desktop

Explore. Prototype. Create.

Start Coding ZK Semaphore ERC20

Uniswap V4 Hooks NFT / ERC721
MultiSig

Recent Workspaces

default workspace

Files

O New & Open € Gist

& Clone E3 Connect to Local Filesystem

* web3.js
e ethers.js
e sol-gpt <your Solidity question here>

Type the library name to see available commands.

Clone Repo from Github

C QO B https://remix ethereum.org/#lang=en&optimize=false&runs=200&evmVersion=null&version=soljson-v0.8.26 +commit.8a97 X

FILE EXPLORER

= WORKSPACES

DS4H-1729709587267

DOLHED@ @
B it

& Projects
& DisasterManagement
B NGO-RMSD
& TD-FRS
| zkp
& CrisisinformationVerification.sol
X README.md

[TrustedDemandFastResponseSystem(1...

LI README.md
Depozinciri.png
DisasterResponse_ProposedModel.png
DS4H.png
InstallationNotes.txt
LICENSE

[README.md

A . o . o .
ﬂ @ °\ o\ {2 Home & CrisisinformationVerification.sol X

3
pragma solidity 70.8.0;

contract CrisisInformationVerification {

struct Information {
string description;
address submitter;
uint256 verificationCount;
bool verified;
mapping(address => bool) verifiers;

mapping(uint256 => Information) public informationList;
uint256 public infoCount = 9;
uint256 public verificationThreshold = 3;

event InformationSubmitted(uint256 infold, address submitter, string description);
event InformationVerified(uint256 infold, address verifier);

function submitInformation(string _description) public { B infinite gas
infoCount++;

Information newInfo = informationList[infoCount];
newInfo.description = _description;

newInfo.submitter = .sender;

newInfo.verificationCount = 9;

newInfo.verified = false;

B wWN

N NN NN N

N Oy wn

emit InformationSubmitted(infoCount, .sender, _description);

function verifyInformation(uint256 _infoIld) public { » nite gas
(_infold @ && _infold <= infoCount, "Invalid information ID");
Information info = informationListl infoId

- Swnci 9. go

sol-gpt <your Solidity question here>

Type the library name to see available commands.
Cloning https://github.com/MSKU-BCRG/DS4H... please wait...

@ Remix - compile

O 8 https://remix.ethereum.org/#lang=en&optimize=false&runs=200&evmVersion=null&version=soljson-v0.8.26 +commit.8a97

SOLIDITY COMPILER > [4 ',Q @ °\ o\ /@\ Home % CrisisinformationVerification.sol X
COMPILER + &) il

: a y “agma solidity ”~0.8.0;
0.8.26+commit.8a97fa7a s © HEEE SEAIGERE) NGk
Include nightly builds contract CrisisInformationVerification {

Auto compile ¢ struct Information {
Hide warnings string description;
8 address submitter;

uint256 verificationCount;
bool verified;

Ctrl+S to compile Projects/ g(address => bool) verifiers;
< Compile Crisisinformation... - DisasterManagement/TD-FRS/

CrisisinformationVerification.sol

Advanced Configurations > 10

=> Information) public informationList;
uint256 public infoCount = 0;
uint256 public verificationThreshold = 3;

Compile and Run script i ©

=l event InformationSubmitted(uint256 infoId, address submitter, string description);

CrisisinformationVerification (CrisisIn event InformationVerified(uint256 infold, address verifier);

function submitInformation(string _description) public { B infinite gas
infoCount++;

: Information newInfo = informationList[infoCount];

E% Run SolidityScan y newInfo.description = _description;

newInfo.submitter = .sender;

newInfo.verificationCount = 0;

newInfo.verified = false;

Run Remix Analysis

i#s Publish on IPFS

.‘; Publish on Swarm 29 emit InformationSubmitted(infoCount, .sender, _description);

Compilation Details 32 function verifyInformation(uint256 _infoId) public { @ infinite gas

_infold @ & _infold <= infoCount, "Invalid information ID");
@ ABI (@ Bytecode 34 Information info = informationListl infoIdl:

Suiic 2. g

sol-gpt <your Solidity question here>

Type the library name to see available commands.
Cloning https://github.com/MSKU-BcRG/DS4H. .. please wait...

@ Remix -deployand run

Deploy & Run
on
Remix vms

or ...

O E) https://remix.ethereum.org/#lang=en&optimize=false&runs=200&evmVersion=null&version=soljson-v0.8.26 + commit.8a97

DEPLOY & RUN > D b & @ -+ § 7 Home & CrisisinformationVerification.sol X
TRANSACTIONS 2

ENVIRONMENT # i pragma solidity "0.8.0;

Remix VM (Cancun) contract CrisisInformationVerification {

VM
struct Information {
string description;
0x5B3...eddC4 (100 ether) address submitter;
9 uint256 verificationCount;
GAS LIMIT bool verified;
e) Estimated Gas 11 mapping(address => bool) verifiers;

ACCOUNT + & @

Custom 3000000
mapping(uint256 => Information) public informationList;
1 uint256 public infoCount = ©;
0 . i uint256 public verificationThreshold = 3;

VALUE

CONTRACT event InformationSubmitted(uint256 infold, address submitter, string description);

.. . . o event InformationVerified(uint256 infold, address verifier);
CrisisinformationVerification - Projecs

NN
A W N RO

function submitInformation(string _description) public { B infinite gas
infoCount++;
Information newInfo = informationList[infoCount];
newInfo.description = _description;
newInfo.submitter = .sender;
newInfo.verificationCount = 0;

At Address oad contract from Ac newInfo.verified = false;

evm version: cancun

Publish to IPFS

emit InformationSubmitted(infoCount, .sender, _description);
Transactions recorded @ i

function verifyInformation(uint256 _infold) public { B infinite gas

Deployed Contracts @ (_infoId > @ & _infoId <= infoCount, "Invalid information ID");
Information info = informationlListl infolIdl:

-~ Suwisio. s

<« - C O EJ https://remix.ethereum.org/#lang=en&optimize=false&runs=200&evmVersion=null&version=soljson-v0.8.26 + commit.8a97 YA i}

Bir sayfa ileriye (Alt+Sag Ok) A e ; P
Gegmisi gostermek icin sag tiklayin veya asagi cekin @ @ @ Q 7 Home < CrisisinformationVerification.sol © Wallet Connect X

TRANSACTTIUNS

Deploy & Run

ENVIRONMENT ¥ 1
on Remix VM (Cancun) ® Connect Wallet

Injected Provider - MetaMask

Remix vms
WalletConnect QR CODE

Remix VM (Cancun)
or Ot h er Remix VM - Mainnet fork
MetaMask
SUCh as WalletConnect
Custom - External Http Provider
”CO nnect Dev - Hardhat Provider

Dev - Foundry Provider

wallets” MetaMask

Customize this list...

Browser Wallet

evm version: cancun Trust Wallet

Publish to IPFS All Wallets

At Address Load contract from Address

Transactions recorded @ i

Deployed Contracts @

@ Metamask - wallet

Add an account

from that test
network

Ag sec¢

& W Yeniden siralamak igin
aglari stirikleyebilirsiniz.

Q Ethereum Mainnet

G Linea Mainnet

Test aglarini goster

‘ Sepolia
‘ Linea Sepolia

X

X

® Account1 Vv
e -

Oxe67BC...CBSDd @

OSepoliaETH

AlinveS.. Goénder Swap Képrii Portfoy
Tokenler NFT'ler Etkinlik
@ SepoliaETH
SepoliaETH

+ Token'leri al

0 SepoliaETH

-+ Tokenleri ice aktar

@ Gizlilik politikamizi giincelledik X
Daha fazlasini oku

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Testnet Faucets

alchemy.com,

Scroll is for Everyone, Everywhere. Scroll is live! Get your API key

Faucets: Alchemy, Chainlink,

or QuickNode)

Paste your MetaMask
address, and request test

ETH.

Each may have its own
conditions such as verifying
through social media or the
presence of ETH in your
wallet.

Ik alchemy For developers For chains Solutions Company Resources Pricing Contact sales m

NO TWITTER AUTH. FREE. EASY TO USE.

Testnet Faucets

Get free testnet faucet funds for testing and developing your dapps today.

O ¢ @

Ethereum Sepolia Faucet Ethereum Holesky Faucet Arbitrum Sepolia Faucet

Dripsupto1ETH Drips 0.1 Holesky ETH every 72 hrs Dripsupto1ETH

@ - 9

Optimism Sepolia Faucet Base Sepolia Faucet Starknet Sepolia Faucet

Dripsupto1ETH Dripsupto1ETH Dripsup to 0.5 ETH

etherscan.io

Sepolia Testnet

@ Etherscan Home Blockchain ¥ Tokens ¥ NFTs v More v

B Sepolia Testnet Explorer

All Filters v Search by Address / Txn Hash / Block / Token g

Latest Blocks Latest Transactions

@ 6931309 Fee Recipient 0x1102E22f...90c62A29c

Ej 0x6201a3781a... From 0x1102E22f...90c62A29¢c
14 secs ago 96 txns in 12 secs

14 secs ago To 0x1268AD18...79c340eE6

0.02087 Eth 0.02085 Eth

6931308 Fee Recipient 0x00000000...000000000 OTIREn Oxc4e8fc2f815... From 0xdd72820A...fBe2c7609

26 secs ago 67 txns in 12 secs 14 secs ago To 0xC539Ae20...eBc12f2AE

6931307 Fee Recipient 0xC4bFccB1...7D341e04A T 0x1099969993... From 0x14609282...0D1CBDA1B
38 secs ago 118 txns in 24 secs - 14 secs ago To Oxea58fcA6...407d54Ce2

6931306 Fee Recipient 0x3826539C...4278CeCof 005 B 0x11ef3a04319... From OxeD5e41B3...5DcBC484D
1 min ago 95 txns in 12 secs ’ 14 secs ago To 0xa8c0Ad4D...e5Dab9A3F

6931305 Fee Recipient 0xF29Ff96a...069d4f1a9 Toro6iEn 0x18a910542d... From 0xAb71Cfc5...18d380D7D
1 min ago 82 txns in 12 secs : 14 secs ago To Oxaa2c5ACa...8afD6f236

6931304 Fee Recipient 0x9A6034c8...6FfDa53ES - 0x19baa53c7b... From 0x538Ce28C...1e7891845
1 min ago 84 txns in 12 secs : 14 secs ago To 0xc94b1BEe...F4b055925

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Remix -deployand run

json-v0.8.26+commit.8a97

O B https://remix.ethereum.org/#lang=en&optimize=false&runs=200&evmVersion=null&version=so

DEPLOY & RUN

2 () e\ Q T Home & CrisisinformationVerification.sol X
TRANSACTIONS -

At Address prag solidity 70.8.0;

contract CrisisInformationVerification {

Deploy & Run

Transactions recorded @ i

Information {

On 7 string description;

Run transactions using the latest
compilation result

address submitter;
uint256 verificationCount;
bool verified;

H Sa R
Remlx VmS e =2 11 mapping(address => bool) verifiers;

: Deployed Contracts @
Or . 5 14 mapping(uint256 => Information) public informationList;
\/ CRISISINFORMATIONVERIFICA [28 uint256 public infoCount = @;
uint256 ic verificationThreshold = 3;
Balance: 0 ETH
event InformationSubmitted(uint256 infold, address submitter, string description);
submitinformation event InformationVerified(uint256 infold, address verifier);

—description buing function submitInformation(string _description) public {
infoCount++;
Information newInfo = informationList[infoCount];

newInfo.description = _description;

@ calldata (O Parameters transact

verifylnforma... newInfo.submitter = .sender;
newInfo.verificationCount = @;

infoCount 27 newInfo.verified = false;

InformationSubmitted(infoCount, .sender, _description);

informationList

3 function verifyInformation(uint256 _infold) public { B infinite
isVerified] _infoId 0@ & _infoIld <= infoCount, "Invalid information ID"
Information info = informationlListl infold
1 hash or address o

creation OT (risisinTormationveriticatlon pending..

Low level interactions ° [vm] from: ©x5B3...eddC4 to: CrisisInformationVerification.(constructor) value: © wei data: 0x608...20033 logs: © hash: 0x89a...2de6f

CALLDATA

Initialize as git repo @ Did you know? To prototype using the Gnosis safe multi sig wallet: create a multisig workspace. RemixAl Copilot (enabled)

Remix - debug

O (5 https://rem

DEBUGGER

Use generated sources(Solidity >= v0.7.2)

0x89a552f06ce17f40e50feb90ab1ace07290f251cc9541cd77dade95542a2d06f

x.ethereum.org/#lar

Stop debugging

e

en&optimize &evmVersion=null&version=soljson-v0.8.26+commit.8a97

& CrisisinformationVerification.sol X

',Q@ e\o\ @Home

pragma solidity ~0.8.0;
contract CrisisInformationVerification {
struct Information {

string description;
address submitter;

¥ Function Stack

No data available

v Solidity Locals @

No data available

0000 PUSH1 0x80 - LINE 4
0002 PUSH1 0;

0004 MSTORE Ox -

0005 PUSHO

000!

0008 SSTORE Ox -

0009 PUSH1 0x03

0011 PUSH1 0x02

v Call Stack ©

Step O

tract Creation -

v Stack @

v Solidity State

informationList

infoCount: 0 uint256

verificationThreshold

Step details

vm trace step: 0
execution step: 0
add memory:
gas: 3

remaining gas: 86
loaded address:

¥ Full Storage Changes

(Contract Creation - Step 0): Object

v CallData (@

uint256 verificationCount;
bool verified;

mapping(address bool) verifiers;

mapping(uint256 = Information) public informationList;

uint256 public infoCount = 0;

uint256 public verificationThreshold = 3;

event InformationSubmitted(uint256 infold, address submitter, string description);
event InformationVerified(uint256 infoIld, address verifier);

b function submitInformation(string _description) public B infinite

infoCount++;

Information

newInfo.description

newInfo.submitter

newInfo.verificationCount = 0;

newInfo.verified = false;

newInfo informationList[infoCount];

© = _description;

.sender;

ct Creation - Step 0) emit InformationSubmitted(infoCount, .sender, _description);

function verifyInformation(uint256 _infoId) public {
_infold © && _infold infoCount, "Invalid information ID");
Information info = informationlistl infoTldl:

Q

©

0 Filter with transaction has

Creation OT LIrisisSinTormationveriticatlon penaing...

[vm] from: ©x5B3...eddC4 to: CrisisInformationverification.(constructor) value: @ wei
data: ©x608...a0033 logs: @ hash: 0x89a...2desf

O Test Networks Compared

FOUR

Test Networks Compared

@ Test environments

Remix VM
Testnets
Local Setups
© @Ganache
o0 Hardhat
DS4H

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

General Features and Network
@ Simulation

Table 1: General Features and Network Simulation

Feature

Blockchain Type

Network

Interaction

Realistic
Blockchain

Behavior

Transaction
Confirmation

Time

Persistence

Test Networks (Sepolia, Goerli,
etc.) Hardhat

Public, decentralized test Local Ethereum
Ethereum network development

environment

Interacts with real nodes and Interacts with local

wallets Ethereum node setup

Closest to Ethereum mainnet Simulated network,
behavior more flexible but less

realistic

Reflects real block times (few Instant or customizable

seconds to minutes) block time

Data persists on the network, Local persistence, data
contracts are verifiable and lost when reset

interactable later

Ganache

Local Ethereum

blockchain simulator

Interacts with locally

simulated blockchain

Simulated network,
allows more control

over chain

Instant block
confirmation or

configurable

Local persistence, data

lost when reset

Table 2: Development and Testing Tools

Feature

Gas Fee

Simulation

Debugging

Tools

Block Explorer
Support

Multiple

Accounts

Testing with

Real Tools

Test Networks (Sepolia,

Goerli, etc.)

Uses real gas fees with test

ETH (reflects mainnet)

Limited to blockchain
explorers like Etherscan or

transaction logs

Yes, via testnet explorers (e.g.,

Goerli Etherscan)

Uses real user accounts with

wallets

Works with tools like Truffle,
Hardhat, Web3 js

Hardhat

Simulated gas fees but

customizable

Advanced debugging tools

(console logs, stack traces)

No built-in support,

requires manual exploration

Multiple local accounts for

testing purposes

Full integration with tools
like Truffle, Hardhat

Ganache

Simulated gas fees, can

be configured

Integrated debugging

with transaction logs

No built-in support,
transaction logs

available

Provides multiple test

accounts

Full integration with
Truffle, Web3,js

Table 1: Performance and Realism

Feature

Realistic Blockchain

Behavior

Transaction

Confirmation Time

Persistence

Gas Fee Simulation

Test Networks (Sepolia,

Goerli, etc.)

Closest to Ethereum

mainnet behavior

Reflects real block times

(few seconds to minutes)

Contracts are permanent

and interactable

Realistic, uses real test ETH

Hardhat

Simulated, less

realistic

Instant or
customizable block

time

Local, data lost when

reset

Simulated,

customizable

Ganache

Simulated, highly

controlled

Instant block
confirmation or

configurable

Local, data lost when

reset

Simulated, configurable

Table 2: User Interaction and Flexibility

Feature

Wallet Integration

Debugging Tools

Multiple Accounts

Flexibility in

Network Conditions

Test Networks (Sepolia,

Goerli, etc.)

Requires real wallets

(MetaMask, Ledger, etc.)

Blockchain explorers like

Etherscan

Real user accounts and

wallets

No control over block

times or gas fees

Hardhat

Can use local accounts,

supports MetaMask

Console logs, stack

traces

Multiple local accounts

Full control over block

times, gas, mining

Ganache

Uses local wallets,

MetaMask for testing

Integrated debugging

with transaction logs

Provides multiple test

accounts

Full control over network

conditions

@ Hardhat or Ganache

Advanced . .
debugging < | Basic debugging
E)fternal t90l Fast setup
integration

Complex

orojects Small-scale tests

Hardhat Ganache

Choosing the right tool for blockchain development.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Truffle and Ganache

truffle(development)> accounts

[

truffle(development)> contract.setUserRole(accounts[3], "LABORANT")
{
£
receipt: {
transactionHash:
transactionIndex: @,
blockHash:
blockNumber:
from:
to:
gasUsed: 46456,
cumulativeGasUsed: 46456,
contractAddress: null,
logs: [],
status: true,
logsBloom:

rawLogs: []
1,
logs: []

truffle(development)> contract.getUserRole(accounts[3])

truffle(development)> !

@ Truffle and Ganache

MNEMONIC

sister wisdom process avocado bid stereo outdoor august couch identify topple capable

Ganache

ART

HD PATH
m/44'/60'/0'/0/account_index

ADDRESS

0xb444CeCe89e8D6EC189BIBF140026c9b35253cdd

BALANCE

99.94 ETH

&

ADDRESS

0x419b6d1E749570Ae60b97102Dc8AO3E5652bED2E

BALANCE

100.00 ETH

ADDRESS

0x6838503fe69e6ED22B7B362645C64d4a45418552

ADDRESS

0x7776Cc9bOB4AfDOd3faC89b07A9d957D2bE13359

ADDRESS

0x8EBcfE1cAf980bb6868fc77fc8EB92468041916D

ADDRESS

0x78097960fb489F870d4973f7A8289Ee8D421aeE3

BALANCE

100.00 ETH

BALANCE
100.00 ETH

BALANCE

100.00 ETH

BALANCE

100.00 ETH

ADDRESS

0x79757183e1a89964Ed8772bF8657E20¢c580E53D9

BALANCE

100.00 ETH

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Truffle and Ganache

Ganache

(L) Accounts (22 BLOCKS @ TRANSACTIONS ((E] (£)) EVENTS

CURRENT BLOCK GAS PRICE GAS LIMIT HARDFORK NETWORK ID RPC SERVER MINING STATUS WORKSPACE
1 pA L i 6721975 MUIRGLACIER 5777 HTTP://127.0.0.1:7545 AUTOMINING QUICKSTART

-k TX Oxc5cfe8c355ccdcaddd3cf9e2¢c859fa79¢c56dc7¢74015a581f23d18141f90fe7d65

SENDER ADDRESS TO CONTRACT ADDRESS /ﬁmi
0x23Db941C1d9918966021B6a085aAE2f f3E6E9d66 0xD3C03426280e81908618DE965F3566027394a142 R
VALUE GAS USED GAS PRICE GAS LIMIT MINED IN BLOCK
0.00 ETH 46456 20000000000 4500000 11

TX DATA

0x724de979000000000000000000000000f7¢c971dc9af78ebd567df7bb386201bfd82d2b0ed000OOOLOOOLEOO000400
0084¢41424152414e5400

@ Section conclusion

We need to use each, but in different times:

Testnets: If you want to test your DApps in a
mainnet-like environment and interact with other
users or developers, testnets are ideal. They offer
realistic conditions, but can be slower and gas fees
are real.

Hardhat & Ganache: Best for rapid development,
flexible testing, and local debugging. However, it’s
usually a better strategy to do a final phase on

testnets before moving to the mainnet environment.

Which testing environment to use for dApp
development?

Testnets

Realistic conditions,

interact with users,

but slower and real
gas fees.

Hardhat §
Gonoche

Rapid development,
flexible testing, local
debugging, but final
phase on testnets
reco

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ DS4H Test Network

® DS4H blockchain research network [3]
o Quorum framework is selected as the main blockchain platform,

o a private/permissioned blockchain with low energy consumption.

o Docker container technology

ordinary virtual machines (single CPU, 8 GB RAM, 256 GB disk) serve istanbul
as nodes.

QBFT was chosen as the consensus protocol

Block time interval was adjusted to 1 second (default is 5 seconds),
and the empty block interval was increased to 600 seconds (default

is 60 seconds). Log verbosity was reduced from level 5 to 3, which

was sufficient for detecting errors.

Chainex E—

Osmaniye

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ DS4H Test Network

New Installations are on the way

- Reinstalling the deployment (On Process)
- Add new services (On Process)
- Hyperledger Indy - Decentrlized identity

- Hyperledger Aries - wallet integration

- IPFS - Distributed File Storage

Chainex =

Osmaniye

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Our Design - DS4H NEW

Tests and
Enhancements

DS4H blockchain
network

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ DApps and Web 3.0...

FIVE

DApps and Web 3.0 development ...

: @ Introduction to Web 3.0
)

Web 3.0 refers to the next generation of the internet, where data and
services are decentralized, users have control over their own data, and
transparency is ensured through blockchain technology.
Core Concepts:
o Decentralization: No central authority controls the data or services.
o User Ownership: Users retain ownership of their data and digital
assets.

o Transparency: Actions and data are publicly verifiable on blockchains.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Central authority
dominance

Limited user
privacy

Centralized data
control

——

WA,

Decentralized
network power

Enhanced user
privacy

Decentralized
data ownership

Comparing data control and privacy in Web 2.0 and Web 3.0.

@ Core Principles of Web 3.0

e Decentralization:
o Data is stored across a distributed network, not controlled by a single entity.
o Blockchain ensures that all participants have access to the same information.
e User Ownership:
o Users control their own data, digital identity, and assets using cryptographic
wallets (e.g., MetaMask).
® Transparency:
o Actions on decentralized applications (DApps) are verifiable by anyone.

o Trust is built into the system through smart contracts.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Decentralized Applications

® (DApps)

® DApps are applications that run on a decentralized network, using smart contracts to operate
without a central server or intermediary.
e How DApps Work:
o DApps are powered by blockchain smart contracts that execute transactions and logic in a
trustless manner.
o Users interact with DApps through wallets that provide cryptographic identity and

control.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Decentralized Applications

® (DApps)

Key Feature of DApps:
e Autonomy: DApps operate independently, once deployed they cannot be controlled by a
single entity.
e Transparency: Code is open-source and verifiable, ensuring trust.

e User Control: Users hold control over their data and interactions with the app.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

ORULEXELL LT

Web 3.0 is the decentralized platform, while DApps are applications on that platform designed to

make Web 3.0 functionality accessible and valuable to users.

Aspect
Scope
Function
Examples

Role in Ecosystem

Web 3.0

Philosophy and infrastructure

Decentralized network of protocols

Blockchain, IPFS, smart contracts

Provides the foundation and protocols

DApps

Specific applications built on Web 3.0
User-facing applications on blockchain
Uniswap, OpenSea, Brave

Brings Web 3.0 features to end-users

How DApps Leverage Web 3.0
@ Principles

DApps heavily rely on smart contracts to function, ensuring that the core principles of decentralization,

transparency, and ownership are maintained.

Decentralization: No single point of failure. DApps run on decentralized blockchain networks (e.g.,

Ethereum).

User Ownership: Users own their digital assets and control their data via private keys.

Transparency: Smart contract execution is public and verifiable, creating a transparent operating

environment.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

The Impact of Web 3.0 on
.1 @ Industries

Finance: Decentralized finance (DeFi) is transforming traditional banking and investment through DApps that
remove intermediaries.
Gaming: Ownership of in-game assets through NFTs allows users to truly own and trade digital goods.

Social Media: Web 3.0 enables user-owned social platforms where content and privacy are controlled by the

user, not a corporation.

Healthcare: Blockchain technology is enhancing data privacy and access control, giving patients ownership

over their health records.

Key Takeaway: Web 3.0 is reshaping industries by decentralizing control and empowering users with ownership and

transparency.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Real-World Examples of
@ Web 3.0 DApps

Finance (DeFi):
o Uniswap: A decentralized exchange where users can trade tokens without an intermediary.
o Aave: A decentralized lending and borrowing platform that eliminates the need for banks.
Gaming:
o Axie Infinity: A play-to-earn game where users own and trade in-game assets (NFTs).
Social Networks:
o Minds: A decentralized social media platform where users control their content and earn rewards for
engagement.
Supply Chain:

o VeChain: Uses blockchain to enhance supply chain transparency and traceability.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Challenges and the Future of
@ Web 3.0

® Challenges:

O Scalability: Current blockchain networks can struggle with high transaction volumes.

©)

©)

User Experience: DApps often have complex interfaces, limiting mainstream adoption.

Regulation: Governments are still catching up with how to requlate decentralized systems.

® future Prospects:

©)

Interoperability: Cross-chain solutions will allow different blockchain ecosystems to communicate and work
together.

Layer 2 Scaling Solutions: Technologies like Optimism and Polygon are improving the scalability of blockchains.

Increased Adoption: As the user experience improves, more industries will adopt Web 3.0 technologies.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Challenges and the Future of
@ Web 3.0

Enhance Blockchain Scalability and Adoption

Implement cross-
chain and Layer 2
solutions

/

Improved
scalability and
mainstream
adoption

Limited scalability
and user
experience

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

The Power of Web 3.0 and
@ DApps

Web 3.0: Represents a shift towards decentralized, user-controlled, and transparent internet services.

DApps: Leverage these principles to create decentralized applications that operate without a central
authority.
Smart Contracts: Ensure deterministic and predictable behavior, key for building trustless and transparent

systems.
Closing Thought:

Web 3.0 and DApps together form the foundation of a more open, transparent, and user-empowered

internet.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

(@ DApps implementation

SIX

web3.js and node.js

Basic Web3 Architecture

O

Smart Contract: Deployed on the Ethereum blockchain (Ganache/HardHat for local testing).
Web3.js or Ethers.js: JavaScript libraries for interacting with Ethereum.

Front-End: Built with HTML, CSS, JavaScript, and integrated with Web3.js or Ethers.js.

MetaMask: A browser extension used to sign and send transactions to Ethereum networks (mainnet,

testnets, or Ganache/HardHat).

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Node.js Web3.js

O

Web3.js: is a JavaScript library that interacts with the Ethereum blockchain, enabling the creation of
decentralized applications (DApps) and smart contracts.

Node.js: Node.js is a runtime that enables JavaScript to be used server-side, allowing developers to build
fast, scalable network applications.

Node.js Advantages: Non-blocking I/O, scalability, and ecosystem of libraries (e.g., Express, Axios).
Web3.js Role: Adds blockchain functionality, allowing you to perform transactions, check balances, and

interact with smart contracts.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

What Node.js Offers for Web3
@ DApps Development

Server-Side Automation:

O Automate smart contract interactions (e.g., recurring tasks, automated payouts).
Backend-Blockchain Integration:

O Build a middle layer between the blockchain and your front-end or external systems (like databases).
Security:

O Manage private keys and sensitive data on the back-end, keeping them away from the client-side.
Handling Complex Logic:

O Execute complex logic, interact with multiple blockchains, and aggregate data from the blockchain.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Writing a Basic Node.js Script
@ for Web3 Interactions

Web3 require ('web3') ;

web3 new Web3 ('http://127.0.0.1:7545"'); // Ganache URL Connecting to Ethereum with
Web3.js:

contractAddress = 'YOUR CONTRACT ADDRESS';
contractABI = [/* ABI from compiled contract */];

simpleStorage = new web3.eth.Contract (contractABI, contractAddress) ;

async function interactWithContract () {

const accounts = await web3.eth.getAccounts () ; Setting and Getting Values (Node.js Script):

// Set a wvalue
await simpleStorage.methods.set (100) .send({ from: accounts[0] });

// Get the value
const value = await simpleStorage.methods.get () .call() ;
console.log('Stored Value:', wvalue) ;

interactWithContract () ;

What Node.js Offers for Web3
@ DApps Development

Server-Side Automation:

O Automate smart contract interactions (e.g., recurring tasks, automated payouts).
Backend-Blockchain Integration:

O Build a middle layer between the blockchain and your front-end or external systems (like databases).
Security:

O Manage private keys and sensitive data on the back-end, keeping them away from the client-side.
Handling Complex Logic:

O Execute complex logic, interact with multiple blockchains, and aggregate data from the blockchain.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Difference Between Browser
@ and Node.js Approach

® Browser-Based Approach:
O Users interact with the smart contract directly from the client-side (via MetaMask).
O Private keys are handled by MetaMask, and interaction is limited to user-triggered events.
® Node.js Server-Based Approach:
O You can handle contract interactions automatically on the server (e.g., scheduled tasks, automated payments).
O Private keys can be securely stored and managed on the server instead of the client.

O Easier to aggregate data from multiple sources (smart contracts, databases) before passing it to the front-end.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Building an APl with Node.js
and Express.js

express = require ('express') ;

Build a Simple API

by which users can get the value stored in the contract
by making a GET request to the API.

Web3 = require('web3') ;
app = express();

port 3000;

web3 = new Web3 ('http://127.0.0.1:7545") ;
contractAddress = 'YOUR CONTRACT ADDRESS';
contractABI = [/* ABI */];

simpleStorage = new web3.eth.Contract (contractABI, contractAddress) ;

app.get ('/value', async (req, res) => {

const value = await simpleStorage.methods.get () .call () ;

res.send ({ storedvValue: value });

1)

app.listen(port, () => {

console.log(~Server is running on http://localhost:${port}\);

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Managing Security with Node.js

O

const privateKey = process.env.PRIVATE KEY; // Store in environment variables

const account = web3.eth.accounts.privateKeyToAccount (privateKey) ;

async function signTransaction ()
4 S { Using a Private Key to Sign Transactions

const tx = { Store private keys securely on the server, using Node.js’s
file system (with appropriate encryption) or environment

to: contractAddress, .
variables.

data: simpleStorage.methods.set (123) .encodeABI (),

gas: 2000000,

b g

const signedTx = await account.signTransaction (tx) ;

const receipt = await web3.eth.sendSignedTransaction (signedTx.rawTransaction) ;

console.log('Transaction receipt:', receipt);

signTransaction() ;

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Feature

Primary Function

Main Use Case

Blockchain Focus
Typical Libraries

Asynchronous

Handling

Node.js Dependency

Node.js

Server-side JavaScript runtime

Backend services, APls, and

microservices
None
Express.js, Axios, etc.

Built-in, through Promises and Async/

Await

Independent runtime

Web3.js

JavaScript library for blockchain

interaction

Interacting with the blockchain, building
DApps

Primarily Ethereum
Contract, Utils, Accounts (Web3 modules)

Supports async calls to blockchain

Runs on Node,js

@ Node.js + Web3.js

Node.js provides the necessary backend infrastructure while Web3.js acts as the bridge between the
application and the blockchain.
Node.js is used for handling server logic, while Web3.js performs blockchain transactions.
Node.js is better for
o server-side operations like managing private keys, automating contract interactions, and building
DApps infrastructure.
o Enables asynchronous execution, which is useful for handling multiple blockchain requests.

Combination Use Case: Create a secure, decentralized backend that performs blockchain operations.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Security Measures in Node.js +
O, Web3.js Integration

Security is Essential. When working with blockchain back-ends, securing private keys and transaction data is
crucial to prevent unauthorized access and maintain data integrity. Node.js can add an extra security layer by
handling sensitive operations server-side, away from client access. Core Security Practices:
® Private Key Management:
o Avoid hardcoding private keys in code. Instead, use environment variables or secure storage solutions
(e.g., AWS Secrets Manager, HashiCorp Vault).
o Use Node.js’s dotenv package to manage private keys safely in .env files.
® Transaction Signing:
o Use server-side transaction signing to keep private keys secure and prevent exposure to the front-end.
o Web3.js provides signing methods like signTransaction to securely sign and send transactions on

behalf of the user.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

O

Practical Sec. Ex.: Environment

Variables & Transaction Signing

Set up .env file:

PRIVATE KEY=your private key here

Access the key securely in code:

require ('dotenv') .config() ;
const privateKey = process.env.PRIVATE KEY;
const account = web3.eth.accounts.privateKeyToAccount (privateKey) ;

Signing Transactions Server-Side:

async function signAndSendTransaction (toAddress, amount) {
const tx = {
to: toAddress,
value: web3.utils.toWei (amount, 'ether'),

This ensures private keys are never

gas: 2000000, i -)
exposed to the client and minimizes risk

const signedTx = awalt account.signTransaction (tx) ;
const receipt = await web3.eth.sendSignedTransaction (signedTx.rawTransaction) ;

console.log("Transaction receipt:", receipt) ;

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ VS code versus remix

Feature VS Code Remix

Purpose General-purpose code editor with Web 3.0 Browser-based IDE for Ethereum smart

plugins contracts

Best For Full-stack DApp and backend development Smart contract creation, testing, and

deployment

Environment Desktop application Web-based

@ Node.js + Web3.js

e You install both on your development environment

O

Node.js - https://nodejs.org/en/download

e For full stack Web 3.0 development any environment which you are familiar such as:

O

VSCode (https://code.visualstudio.com/download)

Recommendation VS Code

Ideal Use Case Full-stack Web 3.0 development

Best For

Advanced developers looking for

flexibility

Remix

Dedicated smart contract development

Beginners or developers focused on Ethereum

contracts

https://nodejs.org/en/download?ref=blog.chainsafe.io
https://code.visualstudio.com/download

@ Node.js + Web3.js

e You install both on your development environment

o Node.js - https://nodejs.org/en/download

e For full stack Web 3.0 development any environment which you are familiar such as:
o Eclipse is best for large, enterprise-level projects, especially if Web 3.0 is only a small component.
o VSCode is ideal for full-stack Web 3.0 and DApps development due to its flexibility, plugin ecosystem,

and strong community support. (https://code.visualstudio.com/download)

Recommendation VS Code Remix

Ideal Use Case Full-stack Web 3.0 development Dedicated smart contract development

Best For Advanced developers looking for Beginners or developers focused on Ethereum

flexibility contracts

https://nodejs.org/en/download?ref=blog.chainsafe.io
https://code.visualstudio.com/download

Connecting to the Blockchain
@ Using Web3.js

Connecting Locally (Ganache): Use Ganache to set up a local Ethereum blockchain for testing.

Code snippet: const Web3d = require('web3'); const web3 =

Web3 ('http://localhost:7545") ;

Connecting Remotely (Infura): Use Infura (or alike) to connect to the Ethereum mainnet or testnet.

Code snippet: const web3 = new Web3 (new Web3.providers.HttpProvider ('<INFURA URL>')) ;

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Use libra

BE [[

ends HTTP requestsy

Forwards reques‘t

§ Re_spor\ds with [l
. dato/confirmation

.- Provides

BlockchainVode

O

Connecting the DApps to
Ethereum

In the app.js file, initialize Web3 and connect to the smart contract.

// Connect to MetaMask's provider
if (typeof window.ethereum !== 'undefined') {
const web3 = new Web3 (window.ethereum) ;
await window.ethereum.request ({ method: 'eth requestAccounts'
1) ;
} else {
console.error ("Please install MetaMask!") ;

}

// Get the contract ABI and address

const contractAddress = 'YOUR CONTRACT ADDRESS';

const contractABI = [/* ABI from compiled contract */];
const simpleStorage = new web3.eth.Contract (contractABI,
contractAddress) ;

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

HTML Structure for DApps
@ Interface

Basic HTML file:

<!DOCTYPE html>
<html>
<head>
<title>Web3.0 DApps</title>
</head>
<body>
<hl>Simple Storage DApps</hl>

<label for="inputValue">Set Value: </label>
<input type="number" id="inputValue">
<button onclick="setValue () ">Set Value</buttons>

<h3>Stored Value: </h3>
<button onclick="getValue () ">Get Value</buttons

<script src="https://cdn.jsdelivr.net/npm/web3/dist/web3.min.js"></scripts>
<script src="app.js"></script>

</body>

</html>

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Interacting with Smart
Contracts via Web Interface

Add JavaScript functions to interact with the smart contract.

async function setValue() {
const value = document.getElementById('inputValue') .value;
const accounts = awalt web3.eth.getAccounts() ;
await simpleStorage.methods.set (value) .send ({ from:
accounts [0] });

}

async function getvValue() {
const value = awalt simpleStorage.methods.get () .call () ;
document .getElementById ('storedValue') .innexrText = value;

This allows users to set and retrieve values from the blockchain via the DApps.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Sending a Transaction Using
@ Web3.js

Code for sending Ether through Infura’s Ethereum endpoint.

Transaction details are processed via Infura, reducing node management

overhead.

const sendTransaction = async () => {
const accounts = await web3.eth.getAccounts() ;
await web3.eth.sendTransaction ({
from: accounts|[0],
to: 'recipient address',
value: web3.utils.toWei('0.1', 'ether')

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Web3.js Functions

web3.js provides functions that you can easily use to interact with the blockchain. Such as:
web3.eth.getBalance()
web3. eth.getChainld()
web3.eth.getGasPrice()

web3.eth.getTransactionCount(),

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Key Functions of web3-utils

Data Conversion: Converts between common data formats, such as Ether to Wei (smallest unit of Ether)
and vice versa, making it easier to handle currency values.
Functions: toWei, fromWei, toHex, hexToUtf8.
Hashing: Provides secure hashing functions, such as sha3 and keccak256, to generate cryptographic hashes
of strings or values, commonly used in transactions and smart contract verifications.
Hexadecimal and Big Number Utilities:

o hexToNumber, numberToHex, and other utilities to work with Ethereum’s hexadecimal data.

o Big number support to handle blockchain integers and floating points accurately.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Why Use web3-utils?

e Efficiency: Simplifies complex data conversions and cryptographic operations, reducing the need for
additional libraries.

® Reliability: Ensures consistency when working with Ethereum’s native formats and data structures.

Practical Application Examples:
e Smart Contract Interactions: Converting user inputs to the correct format for contract calls.
e Frontend DApps Development: Ensuring data matches blockchain requirements in the Ul, e.g., converting
values for display.

Security & Validation: Using hashing to validate and secure transactions.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Common problems &
O, Debugging

e Common Problems:

o MetaMask not connected: Ensure MetaMask is properly connected to the local blockchain

network (such as Ganache)

o Contract Address Mismatch: Verify that the correct contract address is used in the front-end.
o @Gas Errors: Ensure you have sufficient gas in the accounts on the llocal blockchain network

e Debugging:
o Use browser’s Developer Tools (F12) to inspect errors in the JavaScript console.

o Use Ganache’s transaction log to track contract interactions.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ INFURA and other EVMs

e You can interact with other EVM-compatible blockchains such as Polygon, Binance Smart Chain, Avalanche,
etc.

e Usage is straightforward [4] as:
1. Goto Infura (or alike platform)
2. Get the APl endpoint for that specific network

3. Initiate a Web3 provider with that endpoint in your code.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Additional Security Best
@ Practices

e Limit Access to Sensitive Data:
o Use server-side authentication and role-based access control (RBAC) to restrict access to blockchain
operations.
e Use HTTPS and Secure RPC Providers:
o Always connect to Ethereum nodes (e.g., Infura, Alchemy) over HTTPS.
o Consider using services like Infura or Alchemy that handle node security and rate limiting.
e Monitoring & Auditing:
o Set up logging and monitoring for transaction activity.

o Regularly audit your smart contract interactions and APl endpoints for security vulnerabilities.

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

@ Security (To be continued)

Security soon (As a new presentation)

e Common vulnerabilities found in smart contracts,

such as reentrancy attacks, integer overflows, and
denial-of-service exploits.

Best practices for writing secure smart contracts,
including thorough testing, code audits, and the
use of established security patterns.

The importance of considering real-world legal

and regulatory implications.

Force
Feeding

" Denial of
Service

Deprecated/
‘l%%%l) Historical

Griefing

\\
N

Reentrancy PASK

SMART
CONTRACT

SECURITY |

RISKS

Insecure
Arithmetic

D

Attack

/
/

o
7
/

Timestamp
Dependence

L

@

SEVEN

Conclusion

@ Conclusions ...

Try to understand the decentralized philosophy [2] behind

Smart contract development environments: Remix, Ganache + Truffle (Also consider Hardhat) is enough as a
start

Web 3.0 environments: Node.js, Web3.js, VS Code

However keep updated such as the sunset of some projects such as Ganache and Truffle

https://consensys.io/blog/consensys-announces-the-sunset-of-truffle-and-ganache-and-new-hardhat

Security section will be given as another slide.

There is much to talk about, so keep on following our studies at aperta and zenodo
aperta.ulakbim.gov.tr/search?page=1&size=20&g=blockchain&authors=Karaarslan,%20Enis
Internet is full of free courses such as:

o Learn Blockchain, Solidity, and Full Stack Web3 Development with JavaScript — 32-Hour Course
https://www.voutube.com/watch?v=gyMwXulrbJQ

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

https://consensys.io/blog/consensys-announces-the-sunset-of-truffle-and-ganache-and-new-hardhat
https://aperta.ulakbim.gov.tr/search?page=1&size=20&q=blockchain&authors=Karaarslan,%20Enis
https://www.youtube.com/watch?v=gyMwXuJrbJQ

@ Conclusions ...

® Next Steps:
o Build a full-stack DApps using a Node.js backend and a Web3.js front-end.
o Implement security features, such as private key management and server-side signing.
There is much to talk about, so keep on following our studies at aperta and zenodo
aperta.ulakbim.gov.tr/search?page=1&size=20&qg=blockchain&authors=Karaarslan,%20Enis
The most recent version of the slides will be available at aperta and zenodo.

https://zenodo.org/records/13996877

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

https://aperta.ulakbim.gov.tr/search?page=1&size=20&q=blockchain&authors=Karaarslan,%20Enis
https://zenodo.org/records/13996877

REFERENCES

[1] Karaarslan, E. ve Birim, M. (2021). Blokzincirde Glivenli ve Guvenilir Uygulama Geligstirme Temelleri. Siber
Guvenlik ve Savunma Blokzinciri ve Kriptografi icinde (ss. 1-48). Nobel Yayinevi.

[2] Karaarslan, E., & Yazici Yilmaz, S. (2023). Metaverse and Decentralization. In Metaverse: Technologies,
Opportunities and Threats (pp. 31-44). Singapore: Springer Nature Singapore.

[3] Karaarslan, E., Birim, M., & Ari, H. E. (2022). Forming a decentralized research network: DS4H. Turkish
Journal of Electrical Engineering and Computer Sciences, 30(2), 436-450.

[4] A Beginner's Guide to Web3.js,

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

https://aperta.ulakbim.gov.tr/record/273870
https://www.researchgate.net/publication/374687011_Metaverse_and_Decentralization
https://aperta.ulakbim.gov.tr/record/273886
https://blog.chainsafe.io/beginners-guide-web3js/

Dr. Enis KARAARSLAN

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

mailto:enis.karaarslan@mu.edu.tr
https://linktr.ee/eniskaraarslan
https://www.linkedin.com/in/enis-karaarslan-1b195617/

