
Smart contracts, Web 3.0

 & DApps development (2024) v1.0

Introduction to

Dr. Enis KARAARSLAN
MSKU Department of Computer Engineering
Digital Technologies and Cyber Security Lab
https://linktr.ee/eniskaraarslan

INDEX
Deterministic Programming

Development Env.

Deploy & Test Env.

Web 3.0 & DApps

DApps Implementation

Smart Contracts

Dr. Enis
KARAARSLAN

I used ChatGPT to enhance my
previous slides. Napkin AI is
used to draw some of the
diagrams

Dr. Enis Karaarslan made the
formatting of the content,
screenshots and code
implementations

These slides are made for
“Decentralized systems &
applications” class.

Free to distribute the
content

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

ONE
Smart Contracts

Smart contracts …

Kendi

Deterministic Programming: Key Concept
for Blockchain & Smart Contracts

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Definition: Deterministic programming is a programming paradigm where

the output of a function or process is entirely determined by its inputs,

with no randomness or hidden states.

● Importance in Blockchain: In decentralized networks like Ethereum,

nodes must reach consensus on the state of the blockchain.

This is only possible if every transaction and computation leads to the

same result on every node.

A function that adds two numbers, f(x, y) = x + y, will always return the

same result given the same inputs. This is deterministic.

Kendi

Deterministic vs. Non-Deterministic
Programming

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Why Deterministic Matters:

In smart contracts, every node in the network runs the same contract

code and must arrive at the same result to ensure consistency across the

decentralized ledger.

Kendi

How Deterministic Programming
Relates to Smart Contracts

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Smart Contracts: Programs that run on the blockchain, where the outcome of the

contract must be consistent across all nodes.

● Deterministic Requirement: Smart contracts cannot have random elements or

external states that could differ across nodes.

● Real-World Example: If a smart contract for a decentralized lottery uses

randomness from a local machine, the result would differ on each node, breaking

consensus.

function calculateSum(uint256 x, uint256 y) public pure returns (uint256) {

return x + y; // Deterministic behavior: same input -> same output

}

Kendi

Avoiding Non-Determinism in Smart
Contracts

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Time-Based Functions: Using block.timestamp for randomness can be

problematic.

● Accessing External APIs: Data from outside the blockchain (via oracles) can

differ between nodes.

● Machine-Specific Variables: Variables that depend on the local

environment, such as msg.sender or msg.value, should be used cautiously.

Solution: Always use on-chain or deterministic sources of data and avoid any

code that could introduce inconsistencies across nodes.

Kendi

Ensuring Determinism in Solidity

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Pure Functions: Functions that have no side effects and whose output depends

only on the input.

● No Randomness: Use deterministic mechanisms, such as block hashes, but

ensure they don’t compromise security.

● State Changes and Consensus: Ensure that all state changes are deterministic

and do not rely on external data that can change between nodes.

function getBlockHash(uint256 blockNumber) public view returns (bytes32) {
return blockhash(blockNumber); // Deterministic: all nodes agree on

the same blockhash
}

Kendi

Trust and Security through
Determinism

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Verifiability: Anyone can check the correctness of a smart contract by knowing

that its behavior will be the same on all nodes.

● Security: By ensuring that smart contracts are deterministic, developers avoid

vulnerabilities caused by different outcomes.

● Finality: Deterministic smart contracts provide predictable results, ensuring

finality in blockchain transactions.

Key Takeaway: Deterministic behavior is at the core of blockchain's promise of

trustlessness and decentralization.

Kendi

Determinism in Smart Contract
Best Practices

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Follow Solidity’s Best Practices:

○ Use pure and view functions where applicable.

○ Avoid relying on block timestamps for critical logic.

○ Ensure contract logic is consistent across all nodes by using on-chain

data sources.

● Gas Efficiency and Determinism:

○ Deterministic functions tend to be more gas-efficient as they avoid

external data calls and complicated logic.

Kendi

Summary: The Role of Deterministic
Programming in Smart Contracts

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Ensures Consensus: All nodes in the blockchain must arrive at the same

result.

● Prevents Bugs: Avoids issues caused by unpredictable behavior.

● Enhances Security: No room for different outcomes, ensuring the integrity

of smart contracts.

Final Point: Without deterministic programming, blockchain and smart contracts

could not function as a reliable, trustless system.

TWO
Smart Contracts

Smart Contracts

Kendi

Introduction to Smart Contracts

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

What are Smart Contracts?

● Smart contracts are self-executing contracts with the terms of the agreement

directly written into code.

● Operate on decentralized networks, typically blockchain (e.g., Ethereum).

Kendi

Smart Contract to Automate …

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Assume
Bob & Alice
Decides
to Divorce

and there is
“prenuptial
agreement”

Kendi

How Smart Contracts Work

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Key Features:

● Autonomous: No need for intermediaries

● Immutable: Once deployed, they cannot be altered.

● Transparent: Anyone can verify the contract’s code.

Execution Example:

"If X happens, then execute Y automatically."

Kendi

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

●

Kendi

Operation of Smart Contracts
[2]

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Kendi

Basic Structure of a Smart
Contract

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Components:

○ Functions

○ Events

○ State variables

○ (store data)

Kendi

Example Use Case: Escrow
Service

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Problem:

Buyer and seller don’t

trust each other.

● Smart Contract Solution:

Funds are locked in the

contract until the buyer

confirms receipt of

goods.

Kendi

Benefits of Smart Contracts

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Efficiency: Automated execution reduces

delays.

● Security: Blockchain ensures data integrity.

● Cost-effective: No need for third-party

intermediaries.

Kendi

Challenges of Smart Contracts

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Coding Bugs: If a contract has a bug, it can lead to significant losses.

● Legal Uncertainty: Lack of regulation in some jurisdictions.

● Immutability Issues: Mistakes can’t be corrected after deployment.

Kendi

Section conclusion

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Smart contracts are revolutionizing industries by increasing transparency, security,

and efficiency. Such as:

○ Decentralized Finance (DeFi): Smart contracts are used for lending, borrowing,

and trading without banks.

○ Supply Chain Management: Track goods from production to delivery.

● However, they must be carefully written to avoid bugs and exploitations. For a

reference, see [1]

THREE
Development

Development

Kendi

Development

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Write the code

● Deploy it on a test network

● Test and debug

Kendi

Development Environments

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Development

Environments for Smart

Contracts - Overview

Kendi

Features Comparison

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Development

Environments

for Smart Contracts

Features

Kendi

Features Comparison

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Development

Environments

for Smart Contracts

- Features

Kendi

Remix

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

remix.

ethereum.

org

Kendi

Remix + GitHub

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Connect to GitHub Account

Kendi

Remix

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Clone Repo from Github

Kendi

Remix - compile

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

remix.

ethereum.

org

Kendi

Remix - deploy and run

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Deploy & Run

on

Remix vms

or …

Kendi

Remix - deploy and run

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Deploy & Run

on

Remix vms

or other

- such as

- “connect

wallets”

Kendi

Metamask - wallet

a

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Add an account
from that test
network

Kendi

Testnet Faucets

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Faucets: Alchemy, Chainlink,

or QuickNode)

Paste your MetaMask

address, and request test

ETH.

Each may have its own
conditions such as verifying
through social media or the
presence of ETH in your
wallet.

Kendi

Testnet Explorers

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Kendi

Remix - deploy and run

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Deploy & Run

on

Remix vms

or …

Kendi

Remix - debug

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Debug

FOUR
Test Networks Compared

Test Networks Compared

Kendi

Test environments

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Remix VM

● Testnets

● Local Setups

○ Ganache

○ Hardhat

● DS4H

Kendi

General Features and Network
Simulation

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Kendi

Development and Testing Tools

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Kendi

Performance and Realism

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Kendi

User Interaction and Flexibility

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Kendi

Hardhat or Ganache

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Kendi

Truffle and Ganache

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Kendi

Truffle and Ganache

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Kendi

Truffle and Ganache

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Kendi

Section conclusion

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

We need to use each, but in different times:

● Testnets: If you want to test your DApps in a

mainnet-like environment and interact with other

users or developers, testnets are ideal. They offer

realistic conditions, but can be slower and gas fees

are real.

● Hardhat & Ganache: Best for rapid development,

flexible testing, and local debugging. However, it’s

usually a better strategy to do a final phase on

testnets before moving to the mainnet environment.

Kendi

DS4H Test Network

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● DS4H blockchain research network [3]

○ Quorum framework is selected as the main blockchain platform,

○ a private/permissioned blockchain with low energy consumption.

○ Docker container technology

○ ordinary virtual machines (single CPU, 8 GB RAM, 256 GB disk) serve

as nodes.

○ QBFT was chosen as the consensus protocol

○ Block time interval was adjusted to 1 second (default is 5 seconds),

and the empty block interval was increased to 600 seconds (default

is 60 seconds). Log verbosity was reduced from level 5 to 3, which

was sufficient for detecting errors.

Kendi

DS4H Test Network

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

New Installations are on the way

- Reinstalling the deployment (On Process)

- Add new services (On Process)

- Hyperledger Indy - Decentrlized identity

- Hyperledger Aries - wallet integration

- IPFS - Distributed File Storage

Kendi

Our Design - DS4H NEW

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

FIVE
DApps and Web 3.0…

DApps and Web 3.0 development …

Kendi

Introduction to Web 3.0

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Web 3.0 refers to the next generation of the internet, where data and

services are decentralized, users have control over their own data, and

transparency is ensured through blockchain technology.

● Core Concepts:

○ Decentralization: No central authority controls the data or services.

○ User Ownership: Users retain ownership of their data and digital

assets.

○ Transparency: Actions and data are publicly verifiable on blockchains.

Kendi

Core Principles of Web 3.0

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Decentralization:

○ Data is stored across a distributed network, not controlled by a single entity.

○ Blockchain ensures that all participants have access to the same information.

● User Ownership:

○ Users control their own data, digital identity, and assets using cryptographic

wallets (e.g., MetaMask).

● Transparency:

○ Actions on decentralized applications (DApps) are verifiable by anyone.

○ Trust is built into the system through smart contracts.

Kendi

Decentralized Applications
(DApps)

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● DApps are applications that run on a decentralized network, using smart contracts to operate

without a central server or intermediary.

● How DApps Work:

○ DApps are powered by blockchain smart contracts that execute transactions and logic in a

trustless manner.

○ Users interact with DApps through wallets that provide cryptographic identity and

control.

Kendi

Decentralized Applications
(DApps)

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Key Feature of DApps:

● Autonomy: DApps operate independently, once deployed they cannot be controlled by a

single entity.

● Transparency: Code is open-source and verifiable, ensuring trust.

● User Control: Users hold control over their data and interactions with the app.

Kendi

Web 3.0 and DApps

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Web 3.0 is the decentralized platform, while DApps are applications on that platform designed to

make Web 3.0 functionality accessible and valuable to users.

Kendi

How DApps Leverage Web 3.0
Principles

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

DApps heavily rely on smart contracts to function, ensuring that the core principles of decentralization,

transparency, and ownership are maintained.

● Decentralization: No single point of failure. DApps run on decentralized blockchain networks (e.g.,

Ethereum).

● User Ownership: Users own their digital assets and control their data via private keys.

● Transparency: Smart contract execution is public and verifiable, creating a transparent operating

environment.

Kendi

The Impact of Web 3.0 on
Industries

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Finance: Decentralized finance (DeFi) is transforming traditional banking and investment through DApps that

remove intermediaries.

● Gaming: Ownership of in-game assets through NFTs allows users to truly own and trade digital goods.

● Social Media: Web 3.0 enables user-owned social platforms where content and privacy are controlled by the

user, not a corporation.

● Healthcare: Blockchain technology is enhancing data privacy and access control, giving patients ownership

over their health records.

Key Takeaway: Web 3.0 is reshaping industries by decentralizing control and empowering users with ownership and

transparency.

Kendi

Real-World Examples of
Web 3.0 DApps

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Finance (DeFi):

○ Uniswap: A decentralized exchange where users can trade tokens without an intermediary.

○ Aave: A decentralized lending and borrowing platform that eliminates the need for banks.

● Gaming:

○ Axie Infinity: A play-to-earn game where users own and trade in-game assets (NFTs).

● Social Networks:

○ Minds: A decentralized social media platform where users control their content and earn rewards for

engagement.

● Supply Chain:

○ VeChain: Uses blockchain to enhance supply chain transparency and traceability.

Kendi

Challenges and the Future of
Web 3.0

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Challenges:

○ Scalability: Current blockchain networks can struggle with high transaction volumes.

○ User Experience: DApps often have complex interfaces, limiting mainstream adoption.

○ Regulation: Governments are still catching up with how to regulate decentralized systems.

● Future Prospects:

○ Interoperability: Cross-chain solutions will allow different blockchain ecosystems to communicate and work

together.

○ Layer 2 Scaling Solutions: Technologies like Optimism and Polygon are improving the scalability of blockchains.

○ Increased Adoption: As the user experience improves, more industries will adopt Web 3.0 technologies.

Kendi

Challenges and the Future of
Web 3.0

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Kendi

The Power of Web 3.0 and
DApps

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Web 3.0: Represents a shift towards decentralized, user-controlled, and transparent internet services.

● DApps: Leverage these principles to create decentralized applications that operate without a central

authority.

● Smart Contracts: Ensure deterministic and predictable behavior, key for building trustless and transparent

systems.

Closing Thought:

Web 3.0 and DApps together form the foundation of a more open, transparent, and user-empowered

internet.

SIX
DApps implementation

web3.js and node.js

Kendi

Basic Web3 Architecture

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Smart Contract: Deployed on the Ethereum blockchain (Ganache/HardHat for local testing).

● Web3.js or Ethers.js: JavaScript libraries for interacting with Ethereum.

● Front-End: Built with HTML, CSS, JavaScript, and integrated with Web3.js or Ethers.js.

● MetaMask: A browser extension used to sign and send transactions to Ethereum networks (mainnet,

testnets, or Ganache/HardHat).

Kendi

Node.js Web3.js

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Web3.js: is a JavaScript library that interacts with the Ethereum blockchain, enabling the creation of

decentralized applications (DApps) and smart contracts.

● Node.js: Node.js is a runtime that enables JavaScript to be used server-side, allowing developers to build

fast, scalable network applications.

● Node.js Advantages: Non-blocking I/O, scalability, and ecosystem of libraries (e.g., Express, Axios).

● Web3.js Role: Adds blockchain functionality, allowing you to perform transactions, check balances, and

interact with smart contracts.

Kendi

What Node.js Offers for Web3
DApps Development

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Server-Side Automation:

○ Automate smart contract interactions (e.g., recurring tasks, automated payouts).

● Backend-Blockchain Integration:

○ Build a middle layer between the blockchain and your front-end or external systems (like databases).

● Security:

○ Manage private keys and sensitive data on the back-end, keeping them away from the client-side.

● Handling Complex Logic:

○ Execute complex logic, interact with multiple blockchains, and aggregate data from the blockchain.

Kendi

Writing a Basic Node.js Script
for Web3 Interactions

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

const Web3 = require('web3');
const web3 = new Web3('http://127.0.0.1:7545'); // Ganache URL

const contractAddress = 'YOUR_CONTRACT_ADDRESS';
const contractABI = [/* ABI from compiled contract */];

const simpleStorage = new web3.eth.Contract(contractABI, contractAddress);

async function interactWithContract() {
const accounts = await web3.eth.getAccounts();

// Set a value
await simpleStorage.methods.set(100).send({ from: accounts[0] });

// Get the value
const value = await simpleStorage.methods.get().call();
console.log('Stored Value:', value);

}

interactWithContract();

Setting and Getting Values (Node.js Script):

Connecting to Ethereum with
Web3.js:

Kendi

What Node.js Offers for Web3
DApps Development

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Server-Side Automation:

○ Automate smart contract interactions (e.g., recurring tasks, automated payouts).

● Backend-Blockchain Integration:

○ Build a middle layer between the blockchain and your front-end or external systems (like databases).

● Security:

○ Manage private keys and sensitive data on the back-end, keeping them away from the client-side.

● Handling Complex Logic:

○ Execute complex logic, interact with multiple blockchains, and aggregate data from the blockchain.

Kendi

Difference Between Browser
and Node.js Approach

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Browser-Based Approach:

○ Users interact with the smart contract directly from the client-side (via MetaMask).

○ Private keys are handled by MetaMask, and interaction is limited to user-triggered events.

● Node.js Server-Based Approach:

○ You can handle contract interactions automatically on the server (e.g., scheduled tasks, automated payments).

○ Private keys can be securely stored and managed on the server instead of the client.

○ Easier to aggregate data from multiple sources (smart contracts, databases) before passing it to the front-end.

Kendi

Building an API with Node.js
and Express.js

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

const express = require('express');

const Web3 = require('web3');

const app = express();

const port = 3000;

const web3 = new Web3('http://127.0.0.1:7545');

const contractAddress = 'YOUR_CONTRACT_ADDRESS';

const contractABI = [/* ABI */];

const simpleStorage = new web3.eth.Contract(contractABI, contractAddress);

app.get('/value', async (req, res) => {

const value = await simpleStorage.methods.get().call();

res.send({ storedValue: value });

});

app.listen(port, () => {

console.log(`Server is running on http://localhost:${port}`);

});

Build a Simple API
by which users can get the value stored in the contract
by making a GET request to the API.

Kendi

Managing Security with Node.js

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

const privateKey = process.env.PRIVATE_KEY; // Store in environment variables

const account = web3.eth.accounts.privateKeyToAccount(privateKey);

async function signTransaction() {

const tx = {

 to: contractAddress,

 data: simpleStorage.methods.set(123).encodeABI(),

 gas: 2000000,

};

const signedTx = await account.signTransaction(tx);

const receipt = await web3.eth.sendSignedTransaction(signedTx.rawTransaction);

console.log('Transaction receipt:', receipt);

}

signTransaction();

Using a Private Key to Sign Transactions
Store private keys securely on the server, using Node.js’s
file system (with appropriate encryption) or environment
variables.

Kendi

Key Differences Between
Node.js and Web3.js

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Kendi

Node.js + Web3.js

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Node.js provides the necessary backend infrastructure while Web3.js acts as the bridge between the

application and the blockchain.

● Node.js is used for handling server logic, while Web3.js performs blockchain transactions.

● Node.js is better for

○ server-side operations like managing private keys, automating contract interactions, and building

DApps infrastructure.

○ Enables asynchronous execution, which is useful for handling multiple blockchain requests.

● Combination Use Case: Create a secure, decentralized backend that performs blockchain operations.

Kendi

Security Measures in Node.js +
Web3.js Integration

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Security is Essential. When working with blockchain back-ends, securing private keys and transaction data is

crucial to prevent unauthorized access and maintain data integrity. Node.js can add an extra security layer by

handling sensitive operations server-side, away from client access. Core Security Practices:

● Private Key Management:

○ Avoid hardcoding private keys in code. Instead, use environment variables or secure storage solutions

(e.g., AWS Secrets Manager, HashiCorp Vault).

○ Use Node.js’s dotenv package to manage private keys safely in .env files.

● Transaction Signing:

○ Use server-side transaction signing to keep private keys secure and prevent exposure to the front-end.

○ Web3.js provides signing methods like signTransaction to securely sign and send transactions on

behalf of the user.

Kendi

Practical Sec. Ex.: Environment

Variables & Transaction Signing

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Set up .env file:

PRIVATE_KEY=your_private_key_here

require('dotenv').config();
const privateKey = process.env.PRIVATE_KEY;
const account = web3.eth.accounts.privateKeyToAccount(privateKey);

Access the key securely in code:

async function signAndSendTransaction(toAddress, amount) {
const tx = {

 to: toAddress,
 value: web3.utils.toWei(amount, 'ether'),
 gas: 2000000,

};
const signedTx = await account.signTransaction(tx);
const receipt = await web3.eth.sendSignedTransaction(signedTx.rawTransaction);
console.log("Transaction receipt:", receipt);

}

Signing Transactions Server-Side:

This ensures private keys are never
exposed to the client and minimizes risk

Kendi

VS code versus remix

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Kendi

Node.js + Web3.js

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● You install both on your development environment

○ Node.js - https://nodejs.org/en/download

● For full stack Web 3.0 development any environment which you are familiar such as:

○ VSCode (https://code.visualstudio.com/download)

https://nodejs.org/en/download?ref=blog.chainsafe.io
https://code.visualstudio.com/download

Kendi

Node.js + Web3.js

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● You install both on your development environment

○ Node.js - https://nodejs.org/en/download

● For full stack Web 3.0 development any environment which you are familiar such as:

○ Eclipse is best for large, enterprise-level projects, especially if Web 3.0 is only a small component.

○ VSCode is ideal for full-stack Web 3.0 and DApps development due to its flexibility, plugin ecosystem,

and strong community support. (https://code.visualstudio.com/download)

https://nodejs.org/en/download?ref=blog.chainsafe.io
https://code.visualstudio.com/download

Kendi

Connecting to the Blockchain
Using Web3.js

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Connecting Locally (Ganache): Use Ganache to set up a local Ethereum blockchain for testing.

Code snippet: const Web3 = require('web3'); const web3 = new

Web3('http://localhost:7545');

● Connecting Remotely (Infura): Use Infura (or alike) to connect to the Ethereum mainnet or testnet.

Code snippet: const web3 = new Web3(new Web3.providers.HttpProvider('<INFURA_URL>'));

Kendi

Web3.js and INFURA

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Platforms that can be used providing instant access to Ethereum (or alike EVMs) and IPFS network:

○ INFURA, Alchemy, QuickNode, Moralis

● INFURA is recommended as it enables easy blockchain connectivity for Node.js applications with Web3.js.

● The system with such a platform will work as follows [4]:

Setup and implementation details can be reached at reference [4].

Kendi

Connecting the DApps to
Ethereum

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

// Connect to MetaMask's provider
if (typeof window.ethereum !== 'undefined') {

const web3 = new Web3(window.ethereum);
await window.ethereum.request({ method: 'eth_requestAccounts'

});
} else {

console.error("Please install MetaMask!");
}

// Get the contract ABI and address
const contractAddress = 'YOUR_CONTRACT_ADDRESS';
const contractABI = [/* ABI from compiled contract */];
const simpleStorage = new web3.eth.Contract(contractABI,
contractAddress);

In the app.js file, initialize Web3 and connect to the smart contract.

Kendi

HTML Structure for DApps
Interface

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

<!DOCTYPE html>
<html>
<head>

<title>Web3.0 DApps</title>
</head>
<body>

<h1>Simple Storage DApps</h1>

<label for="inputValue">Set Value: </label>
<input type="number" id="inputValue">
<button onclick="setValue()">Set Value</button>

<h3>Stored Value: </h3>
<button onclick="getValue()">Get Value</button>

<script src="https://cdn.jsdelivr.net/npm/web3/dist/web3.min.js"></script>
<script src="app.js"></script>

</body>
</html>

Basic HTML file:

Kendi

Interacting with Smart
Contracts via Web Interface

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

async function setValue() {
const value = document.getElementById('inputValue').value;
const accounts = await web3.eth.getAccounts();
await simpleStorage.methods.set(value).send({ from:

accounts[0] });
}

Add JavaScript functions to interact with the smart contract.

async function getValue() {
const value = await simpleStorage.methods.get().call();
document.getElementById('storedValue').innerText = value;

}

This allows users to set and retrieve values from the blockchain via the DApps.

Kendi

Sending a Transaction Using
Web3.js

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Code for sending Ether through Infura’s Ethereum endpoint.

Transaction details are processed via Infura, reducing node management

overhead.

const sendTransaction = async () => {
 const accounts = await web3.eth.getAccounts();
 await web3.eth.sendTransaction({

from: accounts[0],
to: 'recipient_address',
value: web3.utils.toWei('0.1', 'ether')

 });
};

Kendi

Web3.js Functions

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

web3.js provides functions that you can easily use to interact with the blockchain. Such as:

● web3.eth.getBalance()

● web3. eth.getChainId()

● web3.eth.getGasPrice()

● web3.eth.getTransactionCount(),

Kendi

Key Functions of web3-utils

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Data Conversion: Converts between common data formats, such as Ether to Wei (smallest unit of Ether)

and vice versa, making it easier to handle currency values.

Functions: toWei, fromWei, toHex, hexToUtf8.

● Hashing: Provides secure hashing functions, such as sha3 and keccak256, to generate cryptographic hashes

of strings or values, commonly used in transactions and smart contract verifications.

● Hexadecimal and Big Number Utilities:

○ hexToNumber, numberToHex, and other utilities to work with Ethereum’s hexadecimal data.

○ Big number support to handle blockchain integers and floating points accurately.

Kendi

Why Use web3-utils?

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Efficiency: Simplifies complex data conversions and cryptographic operations, reducing the need for

additional libraries.

● Reliability: Ensures consistency when working with Ethereum’s native formats and data structures.

Practical Application Examples:

● Smart Contract Interactions: Converting user inputs to the correct format for contract calls.

● Frontend DApps Development: Ensuring data matches blockchain requirements in the UI, e.g., converting

values for display.

● Security & Validation: Using hashing to validate and secure transactions.

Kendi

Common problems &
Debugging

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Common Problems:

○ MetaMask not connected: Ensure MetaMask is properly connected to the local blockchain

network (such as Ganache)

○ Contract Address Mismatch: Verify that the correct contract address is used in the front-end.

○ Gas Errors: Ensure you have sufficient gas in the accounts on the llocal blockchain network

● Debugging:

○ Use browser’s Developer Tools (F12) to inspect errors in the JavaScript console.

○ Use Ganache’s transaction log to track contract interactions.

Kendi

INFURA and other EVMs

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● You can interact with other EVM-compatible blockchains such as Polygon, Binance Smart Chain, Avalanche,

etc.

● Usage is straightforward [4] as:

1. Go to Infura (or alike platform)

2. Get the API endpoint for that specific network

3. Initiate a Web3 provider with that endpoint in your code.

Kendi

Additional Security Best
Practices

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Limit Access to Sensitive Data:

○ Use server-side authentication and role-based access control (RBAC) to restrict access to blockchain

operations.

● Use HTTPS and Secure RPC Providers:

○ Always connect to Ethereum nodes (e.g., Infura, Alchemy) over HTTPS.

○ Consider using services like Infura or Alchemy that handle node security and rate limiting.

● Monitoring & Auditing:

○ Set up logging and monitoring for transaction activity.

○ Regularly audit your smart contract interactions and API endpoints for security vulnerabilities.

Kendi

Security (To be continued)

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

Security soon (As a new presentation)

● Common vulnerabilities found in smart contracts,

such as reentrancy attacks, integer overflows, and

denial-of-service exploits.

● Best practices for writing secure smart contracts,

including thorough testing, code audits, and the

use of established security patterns.

● The importance of considering real-world legal

and regulatory implications.

SEVEN
Conclusion …

Conclusion

Conclusions …

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Try to understand the decentralized philosophy [2] behind

● Smart contract development environments: Remix, Ganache + Truffle (Also consider Hardhat) is enough as a

start

● Web 3.0 environments: Node.js, Web3.js, VS Code

● However keep updated such as the sunset of some projects such as Ganache and Truffle

https://consensys.io/blog/consensys-announces-the-sunset-of-truffle-and-ganache-and-new-hardhat

● Security section will be given as another slide.

● There is much to talk about, so keep on following our studies at aperta and zenodo

https://aperta.ulakbim.gov.tr/search?page=1&size=20&q=blockchain&authors=Karaarslan,%20Enis

● Internet is full of free courses such as:

○ Learn Blockchain, Solidity, and Full Stack Web3 Development with JavaScript – 32-Hour Course

https://www.youtube.com/watch?v=gyMwXuJrbJQ

https://consensys.io/blog/consensys-announces-the-sunset-of-truffle-and-ganache-and-new-hardhat
https://aperta.ulakbim.gov.tr/search?page=1&size=20&q=blockchain&authors=Karaarslan,%20Enis
https://www.youtube.com/watch?v=gyMwXuJrbJQ

Conclusions …

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

● Next Steps:

○ Build a full-stack DApps using a Node.js backend and a Web3.js front-end.

○ Implement security features, such as private key management and server-side signing.

● There is much to talk about, so keep on following our studies at aperta and zenodo

https://aperta.ulakbim.gov.tr/search?page=1&size=20&q=blockchain&authors=Karaarslan,%20Enis

● The most recent version of the slides will be available at aperta and zenodo.

https://zenodo.org/records/13996877

https://aperta.ulakbim.gov.tr/search?page=1&size=20&q=blockchain&authors=Karaarslan,%20Enis
https://zenodo.org/records/13996877

REFERENCES

[1] Karaarslan, E. ve Birim, M. (2021). Blokzincirde Güvenli ve Güvenilir Uygulama Geliştirme Temelleri. Siber
Güvenlik ve Savunma Blokzinciri ve Kriptografi içinde (ss. 1–48). Nobel Yayınevi.
https://aperta.ulakbim.gov.tr/record/273870
[2] Karaarslan, E., & Yazici Yilmaz, S. (2023). Metaverse and Decentralization. In Metaverse: Technologies,
Opportunities and Threats (pp. 31-44). Singapore: Springer Nature Singapore.
https://www.researchgate.net/publication/374687011_Metaverse_and_Decentralization
[3] Karaarslan, E., Birim, M., & Ari, H. E. (2022). Forming a decentralized research network: DS4H. Turkish
Journal of Electrical Engineering and Computer Sciences, 30(2), 436-450.
https://aperta.ulakbim.gov.tr/record/273886
[4] A Beginner's Guide to Web3.js, https://blog.chainsafe.io/beginners-guide-web3js/

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

https://aperta.ulakbim.gov.tr/record/273870
https://www.researchgate.net/publication/374687011_Metaverse_and_Decentralization
https://aperta.ulakbim.gov.tr/record/273886
https://blog.chainsafe.io/beginners-guide-web3js/

 Thanks for listening

Dr. Enis KARAARSLAN

enis.karaarslan@mu.edu.tr

https://linktr.ee/eniskaraarslan

https://www.linkedin.com/in/enis-karaarslan-1b195617/

Introduction to Smart Contracts, Web 3.0 & DApps development - Dr. Enis Karaarslan 2024

mailto:enis.karaarslan@mu.edu.tr
https://linktr.ee/eniskaraarslan
https://www.linkedin.com/in/enis-karaarslan-1b195617/

