
Cite(APA):
Alici, U.I., Oksuztepe, A., Kilinceker, O., Karaarslan, E. (2023). Generative AI for Smart Contract Security Testing

Case Study: OpenAI ChatGPT

OpenAI ChatGPT for Smart Contract Security Testing: Discussion and Future Directions

Uzay Işın ALICI
Computer Engineering
Faculty of Engineering
Mugla Sitki Kocman

University
Mugla, Türkiye,

uzayisinalici@gmail.com
0009-0005-6602-4157

Ayça ÖKSÜZTEPE
Computer Engineering
Faculty of Engineering
Mugla Sitki Kocman

University
Mugla, Türkiye,

aycaoksuztepee@gmail.com
0009-0002-6858-712X

Onur Kilincceker
Computer Science
Faculty of Science

University of Antwerp and
Flanders Make vzw.
Antwerp, Belgium

onur.kilincceker@uantwerpen.be
0000-0001-5996-4398

Enis KARAARSLAN
Computer Engineering
Faculty of Engineering
Mugla Sitki Kocman

University
Mugla, Türkiye,

enis.karaarslan@mu.edu.tr
0000-0002-3595-8783

Abstract -

Decentralized applications (Dapps) have the potential to
revolutionize many systems and are increasingly used, eg.
in Web3 solutions. Smart contracts often manage valuable
assets and sensitive data as the loss of any digital asset can
be irreversible. There is a growing need for the security of
these systems as any vulnerability can lead to irreversible
financial losses. However, traditional software
development and testing systems fall short of providing
security for Blockchain technologies and Web3
developers. Considering the current potential of artificial
intelligence, it can be used as a solution to secure Dapps.
LLMs can analyze smart contract code for vulnerabilities,
generate test cases, and provide recommendations for
improvement. In this article, we question the use of
ChatGPT for this purpose. It is shown that ChatGPT has
the potential to aid developers. Advantages, limitations
and improvement methods are given. Possible future work
is given.

Keywords: Large Language Model, Artificial
Intelligence, Smart Contract Security, Smart Contract
Testing, Blockchain Security, Decentralized Applications,
Vulnerability Analysis, Test Case Generation, Code
Analysis, Software Testing, ChatGPT

I. INTRODUCTION

We are in an age where the importance of decentralized
solutions is understood, and many implementations are
emerging. Blockchain technology and smart
contract-based decentralized applications promise to
change the way we do business in many areas.
Decentralized applications (Dapps) have the potential to
revolutionize many systems, but there is an emerging need
for the security of these systems. Loss of any digital asset
may be irreversible because of the nature of the
decentralized systems. We need to be more careful as
smart contracts work autonomously and immutable

records are used in the blockchain. We need to develop
safe and reliable applications especially to avoid
problems, especially in value transfers. However, the
language and environments for Dapps are not mature
enough yet. Traditional software development and testing
systems are not sufficient for secure coding. There is a
need for more sample applications and guidelines on how
to develop and test such code [1].

There are a lot of developments in Generative AI and
especially in the area of text-based chatbots. ChatGPT is
one of the most widely used with its public version. This
study aims to answer following research questions;

● Can we use ChatGPT for smart contract testing?
○ If yes, how to employ ChatGPT for this

purpose?
○ What are advantages and disadvantages

over other methods?
● How can we improve smart contract testing using

ChatGPT?

We will also discuss its limitations and challenges. Section
2 covers basic information about smart contracts, their
features, and testing methods. We summarize the
necessary foundational knowledge on the topic. The
proposed approach and essential information are described
in Section 3. Section 4 contains information on how we
implemented the proposed approach. Finally, our paper is
concluded in Section 5, which summarizes the study.

II. FUNDAMENTALS

A. Smart Contracts and Determinism

Nick Szabo introduced the concept of smart contracts as
programs that formalize and secure the relations between
parties communicating over the public network [2]. Smart
contracts are first implemented on the Ethereum
blockchain network. Determinism is required for smart
contracts to be enforceable. Determinism requires that the

1

mailto:aycaoksuztepee@gmail.com


Cite(APA):
Alici, U.I., Oksuztepe, A., Kilinceker, O., Karaarslan, E. (2023). Generative AI for Smart Contract Security Testing

Case Study: OpenAI ChatGPT

codes be run on all blockchain network nodes, resulting in
the same result state and transaction state in the
blockchain system. Decentralized platforms also do not
allow non-deterministic functions such as randomness [3].

The working steps of a smart contract (contract) is given
in Figure 1 [1]. The software developer loads the smart
contract code to the blockchain system as a record (Step
1). This record has an address by which it can be called.
The transaction records are also stored on the blockchain.
These records can be publicly reachable on public
blockchains such as Ethereum. We can also limit the
reachability of these records among certain institutions on
the private (enterprise) blockchains. The parties interact
with the smart contract by reaching the code address
through their accounts on the blockchain (Step 2). The
code executes itself if the conditions set in the smart
contract are fulfilled. Records of the transaction calls are
written to the blockchain (Step 3). Audit processes are
also possible by examining the transaction records
afterward (Step 4). Auditors are specific control
mechanisms for the implementation field and can monitor
the Dapps if required.

Fig 1. Working Steps of a Smart Contract [1]

Smart contracts can be upgraded when needed. New
versions can be loaded on the blockchain and mechanisms
such as proxy patterns can be used [4]. However special
care should be taken for security. Smart contract
development challenges and opportunities are discussed in
[7].

B. Smart Contract Testing

Smart contracts are irreversible and immutable pieces of
code, so it is impossible to fix bugs in smart contracts
once they are deployed. The biggest reason smart
contracts need to be tested before they are deployed is that
they control sensitive data and valuable assets. Even the
most minor bug can cause substantial financial losses.
There are two main types of testing: automated testing and
manual testing.
B.1. Automated Testing
Automated testing is an automated analysis method that
finds problems such as faults and errors in the smart

contract, and runs iteratively to make the contract perfect.
We can classify the methods as functional testing, static
and dynamic analysis.
Functional testing is testing the functionality of each
smart contract operation with specific inputs. Functional
testing allows us to ensure that the smart contract works as
intended in various scenarios. Different types are possible
such as Unit Testing, Integration Testing, and System
Testing.
Static analysis is testing common security vulnerabilities
with the help of source code or bytecode without
deploying the smart contract.[9] Dynamic analysis is
testing smart contracts by dynamically interacting with
them at execution and giving them different inputs.
In addition to these traditional methods, there are
Mutation Testing and Fuzz Testing, which are very
successful and new testing methods for smart contract
testing [8]. Mutation Testing is a unit test type-based test
that evaluates the contract's ability to detect bugs in the
source code by generating mutations or minor changes to
reveal flaws. Fuzz Testing is a method of feeding the smart
contract with unexpected inputs to create confusion under
unusual situations.
B.2. Manual Testing
Manual testing is the testing of smart contracts manually
by a human tester. These are possible with code audits.
There are also bug bounty programs to encourage
disclosure of weaknesses.
B.3. Analysis of the Tests
We classified the smart contract tests with their properties.
The purpose of each smart contract test type, their
performing times and example tools are given in Table 1.
The strength and weakness of each and the required
execution time is given in Table 2.
The selection of the most suitable testing approach for a
smart contract is influenced by various factors, including
the project requirements, developmental phase, available
budget, and resources. In order to detect vulnerabilities in
smart contracts with testing and get satisfactory results,
more than one of the given tools should perform
simultaneously [1]. Simultaneously utilizing multiple
tools can lead to an overconsumption of resources and
budgetary constraints. Even having enough budget, and
employing various resources and tools may not yield
optimal outcomes. With the inadequacy of the available
tools, the testing power of artificial intelligence plays a
crucial role.

2



Cite(APA):
Alici, U.I., Oksuztepe, A., Kilinceker, O., Karaarslan, E. (2023). Generative AI for Smart Contract Security Testing

Case Study: OpenAI ChatGPT

Table 1. Properties of Smart Contract Tests

Testing Type Purpose Performing Time Example Tools

Functional Testing Verify functional requirements After development Truffle, Openzeppelin

Unit Testing Test individual functions During development Remix Test, Brownie

Integration Testing Verify interactions between each component During development Remix Test, Brownie

System Testing Test as a whole, the final phase of functional
testing

After all other tests Testnet, Devnet

Static Analysis Identify common security vulnerabilities
from source/bytecode

Before deployment Mythril, Slither

Dynamic Analysis Test behavior under various conditions
during execution

After deployment Echidna, Harvey, Fuzzing
[9]

Bug Bounty Encourage people to fix problems with
rewards

Throughout deployment Immunefi, HackerOne

Mutation Testing Verify the test's performance by altering
(mutating) the source code

Before deployment Mutmut, Solidity-coverage

Fuzz Testing Confuse the smart contract with interesting
inputs that are sent repeatedly till finding
vulnerabilities [11].

Before deployment Echidna, Manticore

Table 2. Properties of Smart Contract Tests

Testing Type Strength Weakness Time Required
(Low, Moderate, High)

Functional Testing Validation Can not handle all scenarios [7] Moderate

Unit Testing Fast and effective Not Comprehensive Low

Integration Testing Cost reduction effect Require coordination between various
components

High

System Testing End-to-end testing Difficulty in simulating real-world
scenarios and environments

High

Static Analysis Early defect detection Inability to detect all types of defects,
particularly those related to runtime
behavior or interactions between
different parts of the system

Low

Dynamic Analysis Identification of runtime issues Time-consuming High

Bug Bounty Reach different minds Trust in the third party High

Mutation Testing Detects problems that cannot
be found with other testing
methods

Can not reach a sufficient number of
mutations

High

Fuzz Testing Identify the problem with why
and how

Significant amount of false negatives
[10]

Low

3



Cite(APA):
Alici, U.I., Oksuztepe, A., Kilinceker, O., Karaarslan, E. (2023). Generative AI for Smart Contract Security Testing

Case Study: OpenAI ChatGPT

C. Generative AI and ChatGPT

Generative AI is a paradigm mainly used to create new
and unique content with trained data. Its usage areas are
endless, and the chatbot is one of the most popular [5].
Computer science pioneers such as Turing coined “Can
computers think?” [6]. As large language models (LLMs)
can be processed more efficiently, the answer now can be
terrifying for some.

We had access to ChatGPT1 as the OpenAI company made
it publicly available and without a cost (for a while). Now
our question is “Can we use ChatGPT for security testing
of smart contracts?”

III. THE PROPOSED APPROACH

Our approach is depicted in Fig. 2 starts with uploading
smart contract under consideration and the necessary
query to ChatGPT.

Fig 2. General Overview of the approach

The output of ChatGPT is a report that contains potential
security vulnerabilities of the smart contract. Then, the
user or tester refines this report by reasoning to deepen
and specify the security flaws. The updated query is then
input back into ChatGPT. Similar steps are continued until
the user gathers sufficient information about the security
vulnerabilities. At the end of the process, the user has a
comprehensive test report about the smart contract under
consideration. This test report obtained using ChatGPT
includes a general overview of security vulnerabilities,
along with detailed information for each system flaw.

1 ChatGPT, https://openai.com/blog/chatgpt/

IV. IMPLEMENTATION AND RESULTS

We asked the ChatGPT about smart contract testing, and
the output is given in Fig. 2 and Fig. 3. We then extended
our studies by uploading the smart contracts and
implementing extended tests.

Fig 2. Asking ChatGPT on Smart Contract Testing

Fig 3. Asking ChatGPT on Smart Contract Testing

Implementation …

Even though the word count of the codes didn’t exceed the

4

https://openai.com/blog/chatgpt/


Cite(APA):
Alici, U.I., Oksuztepe, A., Kilinceker, O., Karaarslan, E. (2023). Generative AI for Smart Contract Security Testing

Case Study: OpenAI ChatGPT

limits of the used ChatGPT model, we had timeouts when
uploading the large files, but there are several ways we
can solve this2. These are given as follows:

1) Divide the comprehensive document into 500-word
chunks and upload it to GPT-4. Furthermore, while
loading each part, inform GPT-4 that it will continue to
load subsequent parts.

2) To ensure GPT-4 has all the content, test its memory by
asking it for specific parts again.

3) Ask GPT-4 to provide its output in smaller chunks, and
then the rest of the text can continue to load without
timing out. Parts of 1,000 characters are safe.

V. CONCLUSION

It’s shown that we can use ChatGPT for smart contract
testing. ChatGPT has the potential to analyze smart
contract code for vulnerabilities, automatically generate
relevant test cases, and offer insightful recommendations
for improvement. This can potentially lead to a more
efficient and comprehensive security testing process than
traditional methods. While ChatGPT shows promise, we
should be aware of its limitations. ChatGPT can analyze
code and identify potential issues, but its
recommendations might require refinement and
interpretation by human experts.

A method is proposed for improving smart contract testing
using ChatGPT. For future studies, we can work on
exploring advanced prompt engineering techniques. AI
can be used to generate more effective prompts to elicit
more accurate and insightful responses regarding smart
contract vulnerabilities.ChatGPT can also be integrated
with existing testing frameworks. Specialized LLMs can
be developed for smart contract security testing.

REFERENCES

[1] Karaarslan, E., Birim, M. (2021). Blokzincirde

Güvenli ve Güvenilir Uygulama Geliştirme Temelleri,

Siber Güvenlik ve Savunma: Blokzinciri ve Kriptografi, p

1-48, Nobel Yayınevi

[2] N. Szabo, “Formalizing and securing relationships on

public networks,” First Monday, 1997.

2 A report by GPT4 on how to create large documents using GPT4,
https://docs.google.com/document/d/15O-BI55FuebEoofY1k05skE1kB
f1XBa_5sf4REzdiVA/edit

[3] K. Chatterjee, A. K. Goharshady and A. Pourdamghani

“Probabilistic smart contracts: Secure randomness on the

blockchain,” Presented at 2019 IEEE International

Conference on Blockchain and Cryptocurrency (ICBC).

IEEE, 2019. p. 403-412.

[4] Upgrading smart contracts,

https://ethereum.org/en/developers/docs/smart-contracts/u

pgrading/

[5] Aydin, Ö., Karaarslan, E. (2023). Is ChatGPT Leading

Generative AI? What is Beyond Expectations?

[6] Turing, A. M. (1951). Can digital computers think?.

The Turing Test: Verbal Behavior as the Hallmark of

Intelligence, 111-116.

[7] Zou, W., Lo, D., Kochhar, P. S., Le, X. B. D., Xia, X.,

Feng, Y., ... & Xu, B. (2019). Smart contract development:

Challenges and opportunities. IEEE Transactions on

Software Engineering, 47(10), 2084-2106.

[8] Imperius, N. P., & Alahmar, A. D. (2022). Systematic

Mapping of Testing Smart Contracts for Blockchain

Applications. IEEE ACCESS, 10, 112845-112857.

[9] Smart Contract Testing,

https://ethereum.org/en/developers/docs/smart-contracts/te

sting/

[10] B. Jiang, Y. Liu and W. K. Chan, "ContractFuzzer:

Fuzzing Smart Contracts for Vulnerability Detection,"

2018 33rd IEEE/ACM International Conference on

Automated Software Engineering (ASE), Montpellier,

France, 2018, pp. 259-269, doi:

10.1145/3238147.3238177.

[11] Fuzz Testing,

https://www.immunebytes.com/blog/getting-started-with-s

mart-contract-fuzzing/

Appendix

5

https://docs.google.com/document/d/15O-BI55FuebEoofY1k05skE1kBf1XBa_5sf4REzdiVA/edit
https://docs.google.com/document/d/15O-BI55FuebEoofY1k05skE1kBf1XBa_5sf4REzdiVA/edit
https://ethereum.org/en/developers/docs/smart-contracts/upgrading/
https://ethereum.org/en/developers/docs/smart-contracts/upgrading/
https://ethereum.org/en/developers/docs/smart-contracts/testing/
https://ethereum.org/en/developers/docs/smart-contracts/testing/
https://www.immunebytes.com/blog/getting-started-with-smart-contract-fuzzing/
https://www.immunebytes.com/blog/getting-started-with-smart-contract-fuzzing/


Cite(APA):
Alici, U.I., Oksuztepe, A., Kilinceker, O., Karaarslan, E. (2023). Generative AI for Smart Contract Security Testing

Case Study: OpenAI ChatGPT

Appendix 1 -

Detected Security Vulnerabilities for Lottery Smart

Contract by ChatGPT

First Attempt :

Overall, the smart contract looks relatively secure.

However, there are a few issues that could be improved:

1. Lack of input validation: The smart contract does

not check if the input data is valid or not. For

instance, the invest() function should check if the

msg.value is greater than 0.3 ether, not less than

or equal to 0.3 ether.

2. Random number generation: The random()

function uses the block.timestamp and

block.difficulty as inputs to generate a random

number. This approach is not considered secure

since the block.timestamp can be manipulated by

miners, and the block.difficulty can be predicted

by attackers. Instead, a more secure approach to

generate a random number is to use an Oracle or

Chainlink VRF (Verifiable Random Function).

3. Race condition: If the contract has a large

number of players, the selectWinner() function

may run out of gas, and the winner may not be

selected. To avoid this issue, the contract should

select the winner in multiple batches instead of

selecting them all at once.

4. Lack of access control: Although the contract uses

a modifier to restrict access to the onlyAdmin

function, the contract does not have any other

access control mechanisms. As a result, anyone

can call the invest() function and participate in

the lottery. Therefore, the contract should have a

mechanism to prevent unauthorized access.

Last Attempt :

I have reviewed the provided Solidity smart contract and

identified some potential security vulnerabilities that need

to be addressed:

Randomness vulnerability:

1. The function random() uses block.timestamp and

block.difficulty to generate a random number to

determine the winner. However, this method is

vulnerable to manipulation by miners as they can

manipulate the block.timestamp to produce a

predictable outcome. A better approach is to use

an external randomness source, such as Chainlink

VRF or other secure sources of randomness.

Reentrancy vulnerability:

2. The selectWinner() function transfers the entire

contract balance to the winner, which can lead to

6



Cite(APA):
Alici, U.I., Oksuztepe, A., Kilinceker, O., Karaarslan, E. (2023). Generative AI for Smart Contract Security Testing

Case Study: OpenAI ChatGPT

reentrancy attacks if the winner's contract has a

fallback function that calls back into the lottery

contract. To prevent this, you should transfer the

funds before updating the state variables.

Denial-of-service (DoS) vulnerability:

3. The getBalance() function can be used by anyone,

including attackers, to consume a lot of gas by

calling it repeatedly, leading to a DoS attack. You

should consider adding a limit to the number of

times this function can be called within a certain

time frame or remove it entirely if it's not

necessary.

Lack of input validation:

4. The invest() function does not validate the input

amount, which could lead to losing funds due to

typos or incorrect inputs. You should consider

adding input validation to ensure that the correct

amount is deposited.

Lack of access control:

5. The invest() function does not have any access

control, allowing anyone to participate in the

lottery. You should consider adding an access

control mechanism to restrict participation to

certain users.

Lack of error handling:

6. The contract does not have any error handling,

which could lead to unexpected behavior or

incorrect results. You should consider adding error

handling to all functions to ensure that the

contract behaves as expected and to prevent

attackers from exploiting any unexpected

behavior.

I recommend addressing these vulnerabilities to make the

smart contract more secure.

7


