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A Methodology for Comparing the Reliability of GPU-Based

and CPU-Based HPCs

NEVIN CINI and GULAY YALCIN, Abdullah Gul University, Turkey

Today, GPUs are widely used as coprocessors/accelerators in High-Performance Heterogeneous Computing

due to their many advantages. However, many researches emphasize that GPUs are not as reliable as desired

yet. Despite the fact that GPUs are more vulnerable to hardware errors than CPUs, the use of GPUs in HPCs

is increasing more and more. Moreover, due to native reliability problems of GPUs, combining a great number

of GPUs with CPUs can significantly increase HPCs’ failure rates. For this reason, analyzing the reliability

characteristics of GPU-based HPCs has become a very important issue. Therefore, in this study we evaluate

the reliability of GPU-based HPCs. For this purpose, we first examined field data analysis studies for GPU-

based and CPU-based HPCs and identified factors that could increase systems failure/error rates. We then

compared GPU-based HPCs with CPU-based HPCs in terms of reliability with the help of these factors in

order to point out reliability challenges of GPU-based HPCs. Our primary goal is to present a study that can

guide the researchers in this field by indicating the current state of GPU-based heterogeneous HPCs and

requirements for the future, in terms of reliability. Our second goal is to offer a methodology to compare the

reliability of GPU-based HPCs and CPU-based HPCs. To the best of our knowledge, this is the first survey

study to compare the reliability of GPU-based and CPU-based HPCs in a systematic manner.
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1 INTRODUCTION

For today’s technology, High-Performance Computing (HPC) is an indispensable instrument.
HPCs are supporting research and innovation in many scientific fields, from nuclear sciences to
health, by increasing scientific exploration speed and effectiveness significantly. HPCs open the
door of countless scientific discoveries, including condensed matter physics, molecular dynamics,
and human genome projects. Nevertheless, the demand for a higher-performance supercomputer
keeps increasing; thus, the number of cores and nodes of supercomputers grows day by day.

Besides performance, energy consumption is also a main issue in designing HPCs, especially
when HPCs are heading to extreme-scale computing. This is because the number of system
components is increased due to the performance concern. In order to provide high performance in
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an energy-efficient manner, heterogeneous HPCs were designed and implemented, and several of
those heterogeneous systems were among the first 10 supercomputers in the TOP500 list, such as
Titan [2] and Piz Daint [1]. Particularly, high parallelism provided by the GPU architecture offers
higher performance and finer granularity compared to previously implemented CPU-based HPCs
(or homogeneous HPCs) [67]. Also, GPUs provide better performance per watt compared to CPUs
(see Section 2). Given the power bottleneck in exascale systems and thanks to the advantages of
GPU architecture, it is expected that future HPCs will consist of largely GPU nodes [22]. However,
as the number of components grows in supercomputers, this trend may cause new problems in
terms of reliability [7, 33, 86].

The HPC community has reached a consensus that reliability is a serious issue for large-scale
systems [24]. While the number of system components is increased, software and hardware will
become more complicated and are likely to experience more errors [99]. The main observation
from existing large-scale systems is that exascale systems will be exposed to a variety of faults
many times per day [10]. While ensuring the reliability of today’s petascale systems is costly,
many studies show that obtainment of the reliability of future exascale systems will be much more
costly with existing fault tolerance techniques. It is even predicted that this cost will reach the
level at which the benefits of the new system can be neutralized. Moreover, the common concern
is that checkpoint-restart, which is the key fault tolerance technique, can be useless since the time
between two failures will be too short so that the system will experience a new failure before
the checkpoint-restart period is complete. This means that large applications running on these
systems for several hours cannot be completed successfully [10, 93].

GPUs were initially developed for applications in which reliability was not the main concern,
such as multimedia applications in which faults could be tolerated easily [28, 62]. However, the
general trend is to use GPUs in critical computations in supercomputers because of the high degree
of parallelism they provide [26]. Therefore, they pose a significant risk for reliability. Moreover,
HPCs are particularly sensitive to soft errors because of their high degree of complexity and size,
and adding a huge number of GPUs may increase the likelihood of a system failure dramatically1

[11, 34].
We are confident that GPUs improve performance on HPCs; however, we do not know how

they affect the total reliability of the system, which is an important deficiency in this area. There
have been several studies that investigate the fault tolerance of individual CPUs [44, 83, 87] and
GPUs [78, 80, 117]. However, there is not enough study about how the reliability of the system
changes when we use two types together and massively. Also, although there have been several
studies investigating the reliability of HPCs, only a few of them concentrate on the heterogeneous
systems [22, 41, 67, 112–114]. These studies were done by examining the log files of Titan and
Blue Waters supercomputers. Titan log records have been examined in five of these studies [41,
67, 112–114] and one of these studies has analyzed the Blue Waters log files [22].

However, these studies mostly focus on the reliability of memory components such as DRAMs
and caches, and there is not enough study about the reliability of the instruction execution and
control logic of those systems.

In the literature, as the number of studies that evaluate the reliability of heterogeneous systems
is insufficient, the number of studies comparing the reliability of homogeneous and heterogeneous
systems is quite poor as well. To the best of our knowledge, there is only one study that analyzes
homogeneous and heterogeneous HPCs together [32]. In this study, log data were collected from
four homogeneous HPCs (Jaguar XT4, Jaguar XT5, Jaguar XT6, Eos XC 30) and one heterogeneous

1The terminology used in reliability studies for heterogeneous systems is not standardized, and many refer to failure as

the occurrence of incorrect bit values.
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HPC (Titan) over a period of about 8 years. This study is, although not sufficient, still important
since it is the first and single example of the comparative analysis in which we tried to draw
attention to the deficiency in the literature.

Therefore, in this study, our goal is to provide a comparative analysis of homogeneous (CPU-
based) and GPU-based heterogeneous HPCs in order to draw a comprehensive road map for the
researchers who study to mitigate the reliability issues of heterogeneous HPCs. To this end, we
collect the studies in this domain in terms of two main aspects. First, we collect studies that an-
alyze the error characteristics of heterogeneous HPCs and compare them with relevant studies
conducted on homogeneous HPCs. By examining these studies, we focus on what needs to be
done and the missing research directions to analyze and evaluate the reliability of heterogeneous
HPCs. Meanwhile, we also review GPU fault injection (FI) studies in order to understand the error
resilience of GPU applications. Second, we collect studies proposing fault tolerance for hetero-
geneous HPCs in order to mitigate errors. We evaluate if these proposals are enough for future
heterogeneous HPC systems.

The rest of this article is organized as follows: Section 2 summarizes the place and historical
background of GPU-based heterogeneous HPCs in heterogeneous systems. In Section 3, we ex-
plain in detail the purpose and scope of this study. Section 4 evaluates the results of studies that
examine the reliability features of homogeneous systems and GPU-based heterogeneous systems
in a comparative manner. Section 5 lists the shortcomings of existing GPU-based heterogeneous
HPCs and HPCs in general in terms of reliability. Section 6 evaluates the reliability of GPUs via
fault injection experiments. Section 7 summarizes the reliability schemes developed for GPU-based
heterogeneous systems. Section 8 discusses the hurdles and requirements for increasing the relia-
bility of GPU-based heterogeneous HPCs. Section 9 concludes the article.

2 BACKGROUND: GPU-BASED HETEROGENEOUS HPCS

This section presents a brief historical development of heterogeneous systems, especially GPU-
based systems. We also explain where GPU-based systems are located in heterogeneous systems,
the strengths and weaknesses of GPU-based systems, and why GPU is a promising technology for
HPCs.

2.1 TOP500 List

TOP500 [3] is a list with ranks of the world’s fastest 500 supercomputers. This list uses High-
Performance Linpack (HPL) as a metric to rank the HPCs. HPL is the maximum peak (number of
flops) achieved during the implementation of the Linpack benchmark. The TOP500 lists, which
are accepted as the authority for the HPC world, are published twice a year in June and Novem-
ber. Trends in the HPC world can be followed by analyzing these lists. Figure 1, which is created
by analysis of TOP500 lists, summarizes the historical development of GPU-based heterogeneous
systems. This figure presents the total number of GPU-based HPCs and the total number of het-
erogeneous HPCs.

The main observation that can be made from the figure is that the number of GPU-based het-
erogeneous HPCs is increasing among heterogeneous systems and about 90% of heterogeneous
systems are GPU-based systems in the latest list (November 2018).

In fact, with the introduction of GPUs in HPCs in the 2000s, a new era has begun. Especially
with the development of general programming languages, GPUs have begun to be used extensively
in HPCs. Parallel to that, we encountered the first GPU-based HPCs in the TOP500 list in 2008.
However, the most remarkable development in this area was in November 2010. That year, a GPU-
based heterogeneous HPC, called Tianhe-1A, was able to enter the TOP500 list at the rank of
number one. And the previous term, in June 2010, a GPU-based heterogeneous HPC, Nebulae, had
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Fig. 1. Advancement of GPU-based HPCs.

already entered the list at the rank of number two. These two achievements show that 2010 is a
milestone for GPU-based systems. On all lists published from that date until today, the best GPU-
based HPCs have always been among the top five. However, there were heterogeneous systems at
the top of this list prior to 2010 as well. For example, while in 2008 a GPU-based system appeared
at rank 30th, there was a cell-based heterogeneous HPC on the top of the list. On the other hand,
while there are over 120 GPU-based HPCs on the recently published list (November 2018), no
cell-based systems are on the list. Cell-based systems seem to have left their place to Phi-based
systems. There are 22 Phi-based heterogeneous HPCs on the recent list (excluding systems that
use Phi processors as the main processors). However, this is about one-sixth of the number of
GPU-based HPCs.

Now we can make comments about today’s widespread heterogeneous architecture. The pros
and cons of today’s heterogeneous systems will shed light for future architects. However, even
though today’s performance is far behind the performance of an exascale system, we believe that
it will only be possible to achieve an exaflop with a heterogeneous system, as the trend in the
HPC market is also showing. The most important indication of this is that the world’s fastest five
supercomputers have heterogeneous architectures.

2.2 Advantages of Heterogeneity

Heterogeneous designs present several benefits compared to the homogeneous systems that we
list in this section.

2.2.1 High Performance. While originally GPUs were designed to help CPUs, especially in
games that require a lot of graphic processes, they also attracted the attention of other areas
with their high performance. Especially in supercomputer applications, the GPU can provide
significant performance improvements. The GPU owes this performance boost to its Single
Instruction Multiple Data (SIMD) parallel architecture. This architecture is well suited for large
problems that can be divided into small independent problems. The SIMD architecture provides
fairly high performance because we can divide very large data into very small and simple pieces

ACM Computing Surveys, Vol. 53, No. 1, Article 22. Publication date: February 2020.



A Methodology for Comparing the Reliability of GPU-Based and CPU-Based HPCs 22:5

and the same operation can be repeated for each of the parts without the need for synchronization.
Indeed, many scientific problems are well suited to this specified format. That’s why it’s not
difficult to integrate GPUs into HPCs.

It is thought that the performance increase is directly proportional to the parallelization ratio.
However, even if intersynchronization is not necessary, performance may not increase linearly
with parallelism. This is because each piece (thread) must have finished its work to get a final
result. Even though each thread is of equal size and each process is the same, the processing of
data pieces can take different times, so there may be a latency, and finally, the pieces have to wait
for each other. This actually means that the performance is determined by the piece that finishes
its job last. However, the amount of this latency among the GPU cores (especially new-generation
technologies) is less than the CPU cores. Thus, real-time applications are developing. Since GPUs
have many threads, even if they are slower than CPU threads, we can divide them into many pieces
to solve big problems much more easily, so this naturally improves performance.

2.2.2 Energy Consumption. The energy requirements of today’s petascale systems are mea-
sured by megawatts. It is estimated that the energy consumption of future systems will go far
beyond this. Reducing the energy consumption of exascale systems to a reasonable level is one of
the most important issues in this field. GPUs are the only technology that stands out in this area
with low energy consumption. An affirmation of this is that all of the top 10 systems listed on
the June 2017 Green500 are GPU-based systems. Also, the recent list (June 2018) includes seven
GPU-based HPCs (Green500 is a list of low-energy-consuming HPCs). The most powerful HPC
of the world (Summit) is also ranked sixth in the June 2018 Green500 list. This indicates that the
improvement in GPU technology ignores neither performance increase nor energy efficiency. This
balanced development in GPU technologies is vital for exascale systems.

2.3 Challenges of Heterogeneity

Heterogeneous systems have some weaknesses as well as many advantages. Compared to the CPU,
the performance advantage of the GPU is obvious for individual use, but in heterogeneous super-
computers, the GPU cannot achieve the required performance increase unless these weaknesses
are addressed [61, 124]. There are two main issues that can affect the performance of GPU-based
heterogeneous systems that need to be addressed, which are memory hierarchy and reliability.

2.3.1 Memory Hierarchy. Memory is the most important issue that can affect performance for
all systems. Memory technology is still far from processor technology. When we consider het-
erogeneous systems, the case is even worse. Because CPUs and GPUs have different execution
models and different memory models optimized for individual use, these models are not suitable
for heterogeneous systems. To avoid performance loss, a new optimally balanced memory model
is required for using two processor types together.

2.3.2 Reliability. In general, it is quite difficult to keep large-scale systems highly reliable due
to shrinking processor technology, the ever-increasing number of components, and, consequently,
increased system complexity. However, reliability is crucial for HPCs where many critical compu-
tations are performed. At the same time, it directly affects system performance, because when an
error occurs, some of the processes or sometimes all are repeated. This means both energy and
time loss. Since today GPUs are the most used technology as coprocessors/accelerators in hetero-
geneous HPCs, GPU reliability is now of at least as great importance as CPU reliability. However,
most studies show that GPUs are more susceptible to failures than CPUs [16, 22, 58, 77, 123]. They
indicate that the GPU-related errors are not negligible for HPCs.
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3 AIMS AND SCOPE

System logs contain valuable information in terms of reliability, especially for large-scale HPC
systems. Examining the system logs, despite being rather burdensome, for the last few years for
large-scale systems is very critical and has become more attractive for researchers and system
designers. This is because, given the size and complexity of HPC systems, model-based methods
are not applicable in assessing the reliability of large-scale systems. It is almost impossible to
simulate today’s ultra-large-scale systems, or it is not practical to understand system failures by
means of methods such as fault injection or Architectural Vulnerability Factor(AVF) analysis. With
the analysis of actual log data, more accurate results can be obtained than those obtained from
these methods. Therefore, for large-scale systems, collecting and analyzing reliability-related log
data becomes increasingly important.

Furthermore, a number of critical questions can be answered by analysis of the log data of the
systems, such as the main causes of failures, which components fail more, which errors cause
more failures, and how failure tolerance mechanisms can diminish these failures. Moreover, by
understanding the failure behavior of existing systems, more reliable systems can be designed. In
general, failure data analysis can yield three benefits: First, we can obtain the system dependency
map for making better job scheduling decisions and resource allocations. Second, this analyzed
data can be used to verify the performance of simulators and reliability modeling. Third, log anal-
ysis can be used as a guideline for evolving new low-overhead fault tolerance approaches that are
critical to the future exascale systems.

There are many studies in the literature that have characterized the failures by analyzing log
files. These studies can be categorized under two headings: Studies in the first category (Evaluation
Studies) try to evaluate the reliability of the system through the assessment error/failure rate of
the system, for instance [7, 16, 17, 22, 25, 41, 49, 57, 71, 88], and the studies in the second category
(Improvement Studies) try to improve the reliability of the systems by developing new and more
efficient fault tolerance techniques. These studies usually make use of reports provided through
log analysis such as [5, 6, 31, 32, 38, 39, 47, 53, 56, 68, 69, 84, 119, 125].

The vast majority of studies in the first category have characterized the failures in homogeneous
systems [25, 42, 49, 57, 71, 79, 88]. However, despite urgent need, there are only a few studies
examining the logs of HPCs containing GPU cores [22, 41, 67, 112–114].

As we approach exascale HPCs, understanding the failure characteristics of heterogeneous sys-
tems is becoming more essential since the reliability wall is one of the main limits of going to the
exascale systems. But unfortunately today, we do not have enough information about GPU-related
failures within the HPC systems. If the failures caused by GPUs can be analyzed in more detail,
these types of failures may be tolerated.

For these reasons, in this study, we are investigating the reliability of GPU-based HPCs. Partic-
ularly, we survey the studies that analyze error/failure logs of large-scale systems. Our goal is to
evaluate the reliability of GPU-based large-scale systems via comparing them with homogeneous
systems. More precisely, we aim to make an effort to understand the similar and different aspects
of these two different systems in terms of reliability to be able to evaluate the reliability of GPUs,
which is relatively new for large-scale systems. If we can foresee at what rate or how GPU-related
errors affect HPCs and how often they cause system failure, we can make more rational con-
clusions about how much GPUs contribute to the overall performance of the system. Moreover,
similar and different aspects of GPU- and CPU-related errors can give us insight into the efficiency
of existing error detection and correction methods in heterogeneous systems. This also can enable
overcoming shortcomings by development of new techniques and hardware technologies for
heterogeneous systems. Comparing these two systems will allow us to see the requirements of
future large-scale systems and present a road map for enhancing the reliability of those systems.
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Table 1. Summary of the Major Factors That Can Increase the Number of Failures/Errors

Factors References
Correlations between Failures [25, 41, 49, 54, 60, 90, 110, 112]
Failures & Errors Distribution [36, 37, 42, 47, 54, 56, 60, 79, 88, 103, 113]

Locality Effect [7, 25, 41, 42, 67, 69, 90, 101, 103, 112, 113]
Effect of Resource Utilization and Workload [25, 60, 67, 69, 90, 95, 112]

Temperature [7, 25, 67–69, 90, 113]
Transient and Permanent Faults [17, 22, 49, 95, 96, 102, 103]

Effect of Altitude [17, 101, 103]
DRAM Vendors [60, 101, 103]
Location Effects [103, 112]

Error Modes [8, 22, 34, 96, 101–103, 113]
Size [15, 16, 24, 34, 88, 110]
Age [54, 60, 90]

Memory Error Rate [7, 22, 68, 69, 95, 96, 102]
Failure Root Causes [22, 57, 88, 113]

DIMM Capacity/Chip Density [60, 90]
Newer-Generation Technologies [10, 40, 60, 66, 90, 91, 99, 122]

In order to compare the reliability of these two systems, first, we researched the studies that
analyze the log data of homogeneous and heterogeneous systems from the reliability window. We
have summarized these studies in Table 5 in Section 9. Table 5 includes the category of studies
(Evaluation or Improvement Studies of Homogeneous or Heterogeneous HPCs). Whether to eval-
uate the system reliability or to improve it, we have tried to add all the studies that analyze the
system logs and present the results of their analyses. Some improvement studies include analysis
results.

While we reviewed the studies that analyze the log data of homogeneous and heterogeneous
systems, we have also revealed some factors affecting the reliability of the systems.

After analyzing the studies in detail and determining the major factors that can increase the
number of failures/errors, we compared the heterogeneous systems and homogeneous systems
via these factors (see Section 4). We also summarize these factors and related references in Ta-
ble 1. In the next section (Section 5), we evaluate the results of our comparative analysis and dis-
cuss important issues concerning GPU-based heterogeneous systems. We list deficiencies and our
suggestions.

Although this research covers studies analyzing log data, since the number of studies analyzing
GPU-based heterogeneous HPCs is insufficient, which we are trying to draw attention to by ex-
panding the scope of this research slightly, in another section, we present the significant findings
of some studies that do not perform log analysis (Section 6). In that section, we review the studies
that performed fault injection experiments for GPUs. We summarize these studies in Table 4. The
results of the detailed analysis of these studies contributed significantly to our understanding of
the reliability of GPUs and gave insight into possible reliability issues with the integration of GPUs
into HPCs.

In Section 7, we review in detail the developed checkpoint models for GPUs, and in Section 8,
we discuss the challenges of this subject.

With this work we also provide a methodology to compare the reliability of GPU-based HPCs
and CPU-based HPCs. To the best of our knowledge, this is the first study to compare the reliability
of GPU-based and CPU-based HPCs in a systematic manner.
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4 COMPARATIVE ANALYSIS OF HOMOGENEOUS HPCS WITH GPU-BASED

HETEROGENEOUS HPCS

In this section, we compare the reliability of homogeneous and GPU-based heterogeneous systems
in several aspects. Examining similar and different aspects of systems will provide guidance for
future generations of supercomputers. Comparative analyses, especially for GPU-based HPCs, are
crucial in order to design more robust systems. However, both the poor number of analyses made
and the differences in terminologies and methodologies used do not allow one to reach definite
conclusions.2 So we focus on only finding some clues about the reliability vulnerabilities of existing
systems and try to uncover requirements for improving system reliability.

A summary of all the studies we have analyzed in this section can be found in Table 5 in Section 9
at the end of this article.

To be able to perform a comparative analysis in a systematic manner, in this section, we describe
the causes of failures or the major factors that can increase the number of failures/errors. We
explain these factors in detail in light of the findings of failure/error log analysis studies for both
homogeneous and GPU-based heterogeneous HPCs in a comparative manner. We summarize all
these factors and their related references in Table 1.

Some of the log analysis studies in the literature have been done to understand the overall
reliability of the system [25, 42, 57, 88], while others have been done to assess the reliability of only
memory components [54, 60, 95, 96, 101, 102]. We considered this difference during our analysis
and evaluated the findings among themselves according to the type of study. However, to avoid
repetition, we evaluated all studies in the same section.

4.1 Correlations between Failures

Studies show that some failures trigger some other failures. These types of failures are called
parent-child events or follow-up failures. Correlations may occur among the nodes or failures, and
for some systems correlations are observed at levels that can be considered [110]. We can predict
the failures more accurately if these correlations are not artificial and correctly defined. For both
homogeneous and heterogeneous HPCs, strong correlations have been found among failures [25,
41, 112]. However, homogeneous and heterogeneous systems have a wide variety of parent-child
failure types, and the lack of similar correlations between different systems indicates that more
research is needed in this regard. For example, in a heterogeneous system, there are two types
of errors that usually follow DBE on GPUs: ECC page retirement and driver error. In the same
system, it is observed that the most common failure types are “GPU of the bus, Kernel Panic and
SXM Power-Off. And these failures have stronger correlations with other failure types”; however,
Machine Check Exceptions (MCEs) are independent from other failures [41, 112]. On the other
hand, in a study with 10 different homogeneous HPCs, it was found that the same types of failures
are more likely to follow each other [25]. However, the occurrence of a real correlation between
these types of failures depends on whether the failures are due to hard error or soft error [49].

Some studies [54, 60, 90] investigating memory errors in homogeneous systems have also found
correlations between errors. These studies particularly focused on correctable and uncorrectable
memory errors. However, the results of the studies are quite different. While a recent study [54]
could not find any correlation between correctable errors (CEs) and uncorrectable errors (UEs),
another study [90] reported that there is a tight correlation. Besides, some temporal and spatial
correlations were observed among CEs [90].

2Since the terminologies used in the studies differ so much, we have tried to minimize this difference as much as possible

in order to compare and evaluate the findings. However, we should say that different terminologies used in the literature

lead to a great deal of confusion. We think that there should be a standard.
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4.2 Effect of Resource Utilization and Workload

El-Sayed and Schroeder [25] examine the job records of two homogeneous HPCs with similar
hardware architecture and similar workloads to investigate the effect of usage on node reliability.
In these two systems, they did not observe a strong relation between usage and failures for any
node, except node 0, which is the most used node. On the other hand, they observed that the
application characteristics changed the nodes’ failure behavior.

While another study [95] found no relationship between errors and memory usage, they reached
different conclusions for CPU usage in different time-level analyses. A recent study [60] specified
that the intrinsic factor affecting the memory error rate is workload, not memory or CPU utiliza-
tion. On the other hand, the study in [90] states that utilization is a more prominent factor for
memory corrected errors compared to temperature.

For heterogeneous systems, a comprehensive analysis has not been done. There are only analy-
ses related to single-bit errors (SBEs) [67, 112]. Based on this research, there is a strong correlation
between SBEs and applications, but there is no correlation between SBEs and GPU resource utiliza-
tion. Another study found that for applications with higher GPU memory utilization, their SBEs
rates are also high [69]. However, the number of analyses in this context is not sufficient to reach
a conclusion that there is no relation between utilization and failures.

4.3 Failures & Errors Distribution

Many studies investigating the statistical distribution of failures in homogeneous systems have
found that “the time between failures is better fit [to] a Weibull or Gama distribution than Expo-
nential distribution” [36, 37, 42, 47, 56, 79, 88].

Studies that analyze memory errors also do not include different results. The study in [103]
emphasizes that both SRAM and DRAM “transient fault interarrival times” do not follow an expo-
nential distribution, which is the general assumption in many simulators; instead, they follow the
Weibull distribution. Another study [54] points out that while SRAM detectable uncorrectable er-
rors (DUEs) follow Weibull distribution and DRAM DUEs follow Weibull or gamma distributions,
both have the same fit. A different study suggests that for memory errors, “Pareto distribution
with decreasing hazard rate” is the best fit [60].

The research of heterogeneous systems also coincides with previous results. In particular, it is
emphasized that GPU-based failures have Weibull distribution [113]. However, we think that more
specific analyses are needed in this regard. More accurate reliability models can be designed by
knowing the distributions of the root causes of system failures, such as software-based failures or
DBE-originated failures.

4.4 Locality Effect

It has been found that some nodes are more susceptible to failures for both heterogeneous and
homogeneous systems; however, the reason for this tendency could not be explained satisfactorily
[7, 25, 41, 42]. Applications running on nodes, nodes’ position in systems, temperature, and
altitude are likely to be the main reason for the explained behavior. In addition, correlations
between failures may also be another reason, which means that once a failure has occurred on a
node, the likelihood that the new failures will happen at the same node is quite higher than for
a node that has never failed [25]. Moreover, spatial locality among failures is observed not only
between nodes but also at different levels of systems [90, 101]. In the same way, strong temporal
locality was observed between the failures of both heterogeneous and homogeneous systems.
Temporal locality helps discover cause-and-effect relationships of failures. In a study, Tiwari et
al. pointed out that there was temporal locality also among GPU-related failures, and in this way
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they investigated the causes of failures [113]. In addition, spatial and temporal locality also can
be beneficial for job scheduling; system administers can avoid scheduling critical works on more
error-prone nodes/days.

In addition, spatial and temporal correlations of single-bit errors and double-bit errors were
investigated specifically for heterogeneous systems, and strong spatial and temporal correlations
were found among single-bit errors, but neither spatial nor temporal correlations were found for
double-bit errors [67, 69, 112]. However, in general, we have not encountered a study investigating
the correlation of all memory errors in heterogeneous systems. Two analyses for homogeneous
systems have reached different results. A recent study [7] has found that there is “a very strong
spatial correlation between memory errors (i.e., 99.9% of errors occurring in less than 1% of the
nodes).” The same study also points out the temporal correlation among the errors. They observed
that the system was encountered with one to two memory errors on a normal day, but on some
days they observed that many errors follow each other. However, another study found that the
probability of a node experiencing one or more DRAM faults exposed to new DRAM faults is the
same as the probability of a node where no DRAM faults are seen [103]. This indicates that DRAM
faults do not have spatial correlation. It seems we need more research for both homogeneous and
heterogeneous systems.

4.5 Temperature

According to the study in [90] investigating the behavior of memory errors, the effect of a certain
range of temperatures on DIMM errors is very limited. Furthermore, temperature variations in a
certain range do not seem to have a relationship with failures [25].

However, excessively high temperatures are known to cause hardware failures. Normally we
expect higher temperatures to increase memory errors, but contrary to expectations, many fail-
ures occur in the normal temperature range (30°C to 40°C), and only a few errors occur at high
temperatures (over 60°C) [7]. In particular, a study reports that all of the multibit errors happen in
the normal temperature range [7]. However, this does not mean there is no correlation between
memory errors and temperature.

For heterogeneous systems, we have not found analyses of how temperature affects system fail-
ures. But there are a few analyses for specific types of errors, and these analyses suggest that there
may be correlations between temperature and GPU soft errors; however, note that this correlation
does not exist among all nodes [67]. Specifically, studies in [68, 69] found that there may be a cor-
relation among temperature, power consumption, and GPU single-bit errors; however, they have
noted that it is not easy to define and exploit this correlation. Another study [113] suggests there
may be correlations between DBEs and temperature.

4.6 Transient and Permanent Faults

Much of the existing literature observed that permanent faults are the main cause of many DRAM
faults in homogeneous systems [17, 49, 95, 102, 103]. Although the rate of transient faults changes
very little, permanent faults decrease over time, as in the infant mortality phase of the bathtub
curve [96, 102, 103]. Only in the early years of the system lifetime were DRAM faults replaced
from permanent to transient faults [96].

However, for SRAMs, transient faults increase over time, permanent faults decrease, and SRAM
faults often consist of transient faults seen in L2 and L3 caches [103]. One study indicates that
more than 99% of faults in L3 are transient faults [96].

For heterogeneous systems, both permanent and transient faults are expected to be higher be-
cause the devices size shrinks [22], but in the literature, we have not found an analysis conducted
on permanent and transient faults related to the size of the technology used in HPCs.
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Table 2. SBE Ratios of Four Different HPCs

HPC Single-Bit Errors
Jaguar (DDR2) 49.7%
Cielo (DDR3) 67.7%

Hopper (DDR3) 78.9%
BlueWaters (DDR3+DDR5) 70.01%

However, the study in [43] noted that transient faults occurred in GPU computational units as
well as GPU memory.

4.7 Effect of Altitude

The study in [103] compares the error rates of two systems, where the other features are mostly
similar and the altitude parameter is about 9× that of the other. They observe at least a “2.3×
increase in SRAM fault rate” [17, 103]. The main reason for the increase in SRAM faults is high-
energy neutrons from cosmic radiation. Another study [101] investigates the effect of altitude on
DRAM devices in the same way and achieves similar results. In particular, increases are observed
in “single-bit, single-column, and single-bank transient fault rates.” However, although studies
achieve the result that while altitude increases, memory errors increase, they emphasize that the
effect of altitude on system reliability is highly dependent on error protection mechanisms and
DRAM vendor selection. We have not found any analyses about the effect of altitude on memory
errors for heterogeneous systems.

4.8 DRAM Vendors

Indeed, the choice of DRAM vendors affects system reliability directly. Different vendor types
have different transient and permanent fault rates, as well as different fault modes. Some experi-
ence single-bit faults more; others have more multiple-bank or multiple-rank faults. The difference
between the total number of DRAM faults is also dramatic. This difference is about 4× for some
vendors [101, 103]. Another study [60] observed that the failure rates among some DIMM vendors
can rise up to 2×.

4.9 Location Effects

Studies have been conducted on homogeneous systems and observed that a fault within a DRAM
device has an uneven distribution, meaning that a DRAM fault may happen “in any region of
a DRAM device” [103]. Similarly, there is no meaningful correlation between DRAM fault rate
and DRAM position within a data center. However, there is a significant correlation between rack
position and SRAM fault rates. Although it is not clear but may be due to temperature, at the
top of the rack, SRAM has 20% higher fault rates than the bottom of the rack [103]. We have not
encountered an analysis of heterogeneous systems, but we know that DBEs are seen more in the
upper cages than in the lower cages of the cabinet [112].

4.10 Error Modes

Analyses show that most DRAM and SRAM errors are SBE [96, 103]. Table 2 shows the SBE rates
of three different homogeneous systems and one heterogeneous system. Most of the systems have
about 70% SBE rates, but the average multibit error (MBE) rate is about 30%, which shows that
MBEs are at a level that can no longer be ignored [22, 101–103]. Another study has reported that
while a heterogeneous HPC (which only has 308 nodes) experienced 1.32 double-bit errors per day
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during a 4-month time period, a homogeneous system (which has 9,000 nodes), on the other hand,
“experienced one uncorrectable DRAM error every 11 days” [34]. Although these results are not
directly comparable, nevertheless, we can say that this is alarming especially for heterogeneous
systems where GPU memory is protected by SECDED ECC. Because “SECDED ECC can correct
single-bit errors, but can not correct double-bit errors,” it can only detect them, so when a DBE is
detected in the system, even if this error is a benign error, it usually causes an application crash
[113]. There are still vulnerable areas in GPGPU that can lead to silent data corruption. Moreover,
some large-scale applications, such as molecular dynamics, prefer to switch off ECC because it
reduces performance [8].

Particularly, some studies [68, 69] have investigated the characteristics of GPU SBEs and have
found some remarkable correlations. However, these studies have noted that their system does
not store SBEs. Therefore, the NVIDIA-smi utility, which records both SBEs and DBEs, is used to
collect SBEs. However, they indicate that the number of DBEs recorded by NVIDIA-smi does not
match the number of DBEs in the log files. Thus, the findings of these studies should be taken into
account by considering the explained limitation.

It is clear that more detailed analyses are needed for memory errors. The answers to questions
such as which nodes are responsible for more MBEs, how many of the errors cannot be corrected,
and how many errors lead to silent errors are critical for system reliability. Particularly for hetero-
geneous systems, the studies in this area are very insufficient due to the lack of tools to monitor
and analyze more fine-grained activities.

4.11 Size

For homogeneous systems, we know that for systems with the same hardware type, while the
size increases, the failure rate increases. However, this increase is not faster than linear [88]. The
increase in the failure rate can be expressed as a function of the number of nodes in the system.
This is extremely important for HPCs since their number of components is rapidly increasing. The
failure rate of a single component may not increase in the future; nevertheless, the overall system
reliability will decrease dramatically since system size increases extremely [15].

For heterogeneous systems, even though we do not have enough data to verify, it is highly
possible that while the system size increases, the failure rate increases faster than linear. All works
in this area emphasize this likelihood [16, 24, 34, 86].

Therefore, for large-scale systems, it will be more important to detect errors as early as possible
and also understand the relationship in order to prevent spreading [110].

4.12 Age

Age is also one of the factors to consider when evaluating the reliability of system components,
because with aging, the number of errors may increase or error behaviors may entirely change. As
such, there are many studies that evaluate the age factor in terms of system reliability. However,
the results of the studies vary. For instance, the study in [54] monitored a homogeneous system
over 5 years and observed no significant “age-dependent trend” in memory error rate. Specifically,
they analyzed DRAM and SRAM errors and found that variation in detectable uncorrectable errors
intervals is trivial over these years. This is because memory operational lifetime may be longer
than 5 years. Another study indicates that correctable and uncorrectable error rates are highly
influenced by age. However, this study also emphasizes that impact severity depends on some
factors such as “DIMM technology, platform and vendor” [90]. Another study [60] has analyzed
chip density and age comparatively. They noticed that among systems with the same age but with
a different number of cores, as the number of cores increases, the number of failures increases; on
the other hand, when we keep the number of cores constant, the failure rate increases with aging.
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A different study [18] has investigated how permanent and intermittent faults affected GPUs by
accelerating processor aging via excessive temperature. They elevated the temperature to 170°C
so that intermittent faults could occur and then observed that intermittent faults were lost when
they lowered the temperature to 150°C.

4.13 Memory Error Rate

Most studies are unable to reveal the absolute number of errors of systems due to confidentiality
concerns [95, 96]. Nevertheless, few studies give error rates.

In this area, one of the few studies on heterogeneous HPCs reported that about 67% of machine
check exceptions are memory errors [22]. Memory errors are also a serious problem for homoge-
neous HPCs. While one study [102] has calculated that memory error rate is 0.066 FIT/Mbit (i.e.,
about a fault every 6 hours), another study [7] has collected 55,000 independent memory errors
in just a year’s period. So the system experiences a memory error about every 10 minutes. These
studies show that memory error rates are above acceptable levels for HPCs.

4.14 Failure Root Causes

System failures in heterogeneous HPCs are usually caused by hardware, heartbeat, and software
errors. However, software-related failures have the highest total node repair time. Environmental
and hardware-related faults are number two and number three, respectively [22]. This study also
reports that only 2.9% of failures are unknown. This shows that the system’s failure diagnosis
mechanism works well. Another study has listed the root cause of GPU-related failures as “Off-
the bus, ECC page retirement and DBE on GPU” [113]. A different study [11] has reported common
hardware failures related to GPUs: GPU has fallen off the bus, GPU killed by applications, slow
GPUs. It has stated that it is quite difficult to diagnose the root causes of these failures.

On the other hand, studies for homogeneous HPCs have different results. A study [57] reports
that the software halts cause more outages, but the MTTR value is very low, while the hardware
outages have a longer repair time. This is due to hardware-related problems needing parts replaced
and tests performed. According to another study [88], the main sources of system failures are
hardware errors; the second responsible is software errors. Likewise, hardware errors require the
longest repair time, and software errors follow hardware errors. Interestingly, for most of the
systems analyzed in this study, the rate of unknown failures is fairly high (average 20%) and their
total repair times are less than 5%. This result suggests that most of the unknown errors are soft
errors that can be corrected by reboot.

4.15 DIMM Capacity/Chip Density

Studies [60, 90] in the literature state that increasing the DIMM capacity affects the error rate, but
these studies have not been able to observe a consistent correlation.

On the other hand, studies have reached different results for chip density. One study [90] does
not find a consistent relationship between the error rate and chip density, while another study [60]
points to a strong correlation.

4.16 Newer-Generation Technologies

It is foreseen that advances in memory technology will increase memory errors on next-generation
DIMMs [65, 66]. However, a study [90] examining memory errors of different systems observed
that the correctable memory error rates of newer-generation systems were lower compared to
older-generation systems. On the other hand, another study [60] emphasizes that DRAM cell re-
liability increases with new-generation technologies; however, this increase is not sufficient com-
pared with the rapid increase in chip density. This means that total memory reliability is reduced.
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Another study [40] comparing five HPCs in terms of reliability characteristics investigates
whether newer HPCs with developing technologies are less reliable, as is indicated in several pre-
vious studies [10, 91, 99, 122]. The study specifically examines how HPC systems change failure
characteristics during the stable operational period. They quantified scale-normalized MTBF to
compare the HPCs of each other and found that newer HPCs have higher scale-normalized MTBFs.
However, they underlined that comparing system reliability with merely MTBF will mislead and
therefore they use scale-normalized MTBF [40]. But this metric is also insufficient to compare be-
cause it only takes into account node numbers and it assumes the other features of systems (e.g.,
core counts, period of the data collection, usage level of the system, etc.) are equal.

4.17 Why GPUs Are Less Reliable

So far, we have tried to give examples of field studies regarding that heterogeneous systems are
less reliable than homogeneous systems. Now, based on the literature, we want to summarize the
reasons for this.

Indeed, the reasons for making GPUs more error prone are related to their three peculiarities as
follows:

Massive Parallelism: Heterogeneous systems allow more parallel processes to improve perfor-
mance. However, this (1) raises the complexity of systems, which increases the tendency to design
and software faults, and (2) raises the dependencies that require more I/O operations with unre-
liable communication units. An application running on a GPU can consist of millions of threads,
but these threads usually run independently of each other, and any error that occurs in a thread
will not affect the others [52, 86]. However, an application that executes together on GPU nodes
and CPU nodes may be very vulnerable; an error in any node can spread very quickly if not de-
tected in time. Also, an error in the shared resources of GPUs, such as a scheduler, dispatcher, or
shared memory, can affect all running parallel threads, and this can cause the error to spread to
one or more GPU nodes [34, 82]. A failure in such a case is quite costly compared to a homo-
geneous system. Further, many experimental studies show that memory errors are particularly
prone to disturb multiple threads or multiple thread blocks [81, 113]. Therefore, as the system size
increases, error detection and correction mechanisms will be of great importance.

High Density: Since a GPU combines many execution units, the temperature of the GPU will
be quite high during the execution [120]. At the same time, a GPU can perform about 50x more
operations than a CPU. Potentially, GPUs can include more than 3,000 execution units (EUs) work-
ing in parallel. Conversely, for instance, a 12-core CPU contains about 72 EUs. However, EUs are
the main devices that cause the system to overheat. Therefore, it is predicted that the number of
failures caused by overheating of GPUs will be at least 10x higher than CPUs [51]. As the number
of EUs increases, heating increases, and overheating is one of the most important causes of soft
errors. In addition, as the density of the chips increases, the performance increases and the heating
also increases, and soft errors are inevitable for GPUs with high-density chips due to overheating
[63].

High Utilization: As shown in Table 3, in heterogeneous systems, the number of GPUs is on the
rise. The number of GPU cores already exceeds half of the total number of cores in the system, and
usage of a huge number of cores makes the system more failure prone [34]. Moreover, it is foreseen
that the number of applications utilizing GPUs will increase in the future, and an application will
utilize more GPUs [51]. This high utilization will keep GPU components busier and more bits
in those systems will be required for the architecturally correct execution. Thus, occurrence of a
faulty bit in GPU systems will lead to an error with higher probability, which reduces the reliability
(or Mean Time to Failure (MTTF)) of the system [64].
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Table 3. Advancement of Heterogeneous HPC

Total SM Unit CUDA Total Total Total

Year & HPC GPU Node (Each GPU) Cores CUDA Cores SM Units Cores GPU% CPU%

2010 & Nebula 4,640 14 448 2,078,720 64,960 120,640 54 46

2010 & Tianhe-1A 7,168 14 448 3,211,264 100,352 186,368 54 46

2012 & Titan 18,688 14 2,688 50,233,344 261,632 560,640 47 53

2017 & Piz Diant 5,320 56 3,584 19,066,880 297,920 361,760 82 18

5 REQUIREMENTS TO IMPROVE THE RELIABILITY OF HETEROGENEOUS SYSTEMS

This section includes the open reliability concerns of GPU-based heterogeneous HPCs, which re-
quire further analyses and research, as well as our recommendations on these topics.

We can list the requirements as follows:

• Reliability of a heterogeneous system depends on many factors since it is more complex
and has more dependencies. Components of the system should be evaluated together in
order to achieve more accurate results. Therefore, more specific and deep analysis should
be done. For example, it is important not only to investigate the total failure distribution of
the system but also to draw a detailed error map of the system including the distribution of
all the faults that cause the failures, individually. Therefore, we need tools to monitor more
fine-grained activities of GPUs.

• To make the results of the analysis meaningful enough, data should be collected over a suf-
ficiently long period of time from multiple systems with different component counts and
properties. However, only few studies, such as [88, 89, 118], have been done in this way and
only for homogeneous systems. In addition, statistical correlations among events obtained
only by analysis of log files do not necessarily indicate a cause-and-effect relationship [104]
because many analysis works are done with data collected in a very short time period. How-
ever, it is necessary to evaluate the previous events of all components related to this event
together in order to evaluate any event correctly. System administrators can generally make
consistent comments on all context information of events, but the comments of researchers
with log information only for a certain time period will not cover the overall system and
may mislead.

• Most of the studies have analyzed the faults of a particular component, such as memory.
However, studies show that some important GPU structures such as “streaming processors,
warp scheduler are seriously unreliable” [109]. Moreover, GPUs have a significant amount
of vulnerable execution logics and functional and control units [73]. Although for complete
GPU protection there are power and space constraints, we need to take into account all
GPU structures together in order to improve the reliability of GPU-based systems [73, 109].

• The analyses of error logs need to be performed with a certain standard in a systematic way
in order to be able to compare the reliability of the systems. Differences in methodologies
used in field data analysis studies may lead to misunderstandings. In particular, unity should
be obtained in the definitions of the terms “fault, error, and failure” used in analyses. It
should also be decided which of these would be more suitable to be used in comparisons
(i.e., in number of faults, errors, or failures which of these are more accurate to use).

• Another crucial issue is constructing a reliability model for assessing the reliability of
heterogeneous systems. There are no metrics or analytical models to compare reliability
for heterogeneous systems. First, we need metrics specific to these systems that we can
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measure at an acceptable level of reliability in these systems. Metrics that can be obtained
by analyzing many aspects of all the factors that may affect system reliability can be used
in analytical modeling.

• Calculating values such as MTTF using only logs can be inaccurate and misleading, because
the error logs are gathered in many studies when the protection mechanisms are in oper-
ation. Especially in the case of memory errors, the system does not record all faults in the
logs because many faults are corrected and we do not know the actual rate of these unsaved
faults and their dependencies to other errors. Moreover, important information about the
characteristics of silent errors can be accessed in an unprotected system. However, in the
literature, we encountered only one study that analyzed the data of an unprotected system
[7].

• There is only one study that has analyzed the logs of homogeneous and heterogeneous sys-
tems together in the literature [40]. However, this study does not provide a comprehensive
analysis. A detailed review describing the similarities and differences of failures and their
relationships to each other is not included in the literature. However, such a study may
be a guide for analytical modeling. Many log analysis studies can provide early detection
or prediction if evaluated together [55]. Moreover, if we can know the differences in relia-
bility behavior between GPUs and CPUs in HPCs, we can more easily decide whether the
reliability metrics and fault tolerance mechanisms developed for homogeneous systems are
sufficient for heterogeneous systems as well. This study is trying to provide a road map to
the stakeholders in order to satisfy these requirements.

• Error logs can also be used to develop simulators and benchmarks that can perform more
realistic analyses. Especially for heterogeneous systems, we can say that these areas are
still in the infant stage. However, when considering the limitations of access to the log data
of heterogeneous HPCs (i.e., error logs, system event logs, data from environmental sen-
sors), the importance of simulators is increasing. Also, heterogeneous HPCs require special
benchmarks due to differences in architectures and programming models. In many GPU
studies such as [97] (not just in terms of reliability), different benchmarks are used. How-
ever, since there is no standard benchmark, we cannot compare their suggestions in this
way [98].

• The research shows that there are serious reliability differences between the nodes [25, 42,
79]. It is also significant to measure the reliability of individual nodes as well as to measure
the total reliability of the system. This will increase performance, especially by assigning
critical jobs to more reliable nodes. Especially in heterogeneous systems, reliability differ-
ences among nodes are expected to be much higher. This means that node-specific models
should be developed with metrics that can measure the reliability of the nodes. Such a model
can provide dynamic scheduling to the extent that failures can be predicted and so this min-
imizes losses.

• The memory of GPU-based heterogeneous systems seems to have serious reliability prob-
lems [22]. As GPU memories increase, it is estimated that these problems will grow more
and so threaten the future of heterogeneous systems. Therefore, more effective protection
methods should be developed for GPU memories.

• An error in the system is not always dangerous. Some errors may occur in parts of the
application that will not affect the result. Such faults are called “benign errors.” When a
benign error occurs in the system, if the application can continue to normal operation, it
can produce the desired, correct result. However, in today’s HPCs, there is no solution to
distinguish benign errors from others, so detection of benign errors can cause unnecessary
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interruptions. For this reason, it is necessary to develop solutions to determine the number
of such failures and to distinguish benign errors from others.

• Considering all correlations while building a reliability model is also critical for the accu-
racy of the model, but this is not possible in practice. Often when a model is constructed, it is
assumed that the failures are independent of each other and that the components are iden-
tical. That is, the probability of failure of a component is the same as any other component.
Under these assumptions, a rough, approximate model can be generated [50]. However, as
the size and complexity increase, particularly in heterogeneous HPCs, the generated model
gets away from the real values. Because, in reality, the failures are not independent but
are tightly bound together, components are not the same and do not have the same failure
probability, whereas some nodes are more failure prone. Therefore, it is not easy to model
failures by using standard distribution models [118].

5.1 Log Analysis Challenges

Although HPC log files allow us to monitor the system’s health and evaluate it in many ways,
especially when we consider the rapid increase in HPCs’ scale and complexity, analysis of system
logs is a real challenge for many reasons. We can list these difficulties as follows:

• Big data: As the size of HPC systems increases, the size of log records increases and ana-
lyzing log files becomes a big data issue [48]. For example, for Blue Waters, approximately
3.7TB-sized system logs have been analyzed [22]. Automatically analyzing a file at this size
is a real challenge; it is almost impossible to manually analyze. It needs to develop custom
tools using some intelligent techniques [9].

• Unstructured file formats: HPC log files are naturally unstructured. Systems produce
various types of log files since they collect data from different monitoring tools and a wide
variety of hardware and software sensors, such as memory faults and processor usage [72].
The format of the log files may vary depending on the system or the log database. For
example, the meanings and orders of the fields or separators can be different [105]. Also,
many log files are not human readable since they consist of some codes, numeric values, or
cryptic text.

• Redundant data: One problem with the contents of log files is that “log files contain much
redundant data and information of varying importance” [9, 75] because HPC log data has
strong spatial and temporal correlations [21]. For example, some failures may be periodi-
cally reported from the same place in the system due to the periodic recording mechanism.
Also, many failures can occur with nearby timestamps in different places. The reason for
this is probably a failure (such as power failure) that could lead to many other failures in
different places in the system [20]. However, this causes mistakes, especially when we try
to diagnose root causes of failures. Therefore, it is necessary to eliminate redundant infor-
mation using some filtering techniques before analysis [107].

• Lack of scalable and flexible tools: Some scalable methods for analyzing log data are
needed. This will require scalable and highly available database technologies that store the
huge data in a flexible format and provide large-scale analytics with low latency, even in
real time [74].

• Cooperation: Analysis of large data consists of interdisciplinary research that requires
experts from different fields to collaborate. This requires scientists from different fields to
work together to exchange ideas. However, in order to be able to interpret the analyses in
such a study, some basic issues may need to be known by all scientists who conduct the
research [13].
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• Data confidentiality: The biggest obstacle in front of log-file analysis is the limited access
to log files. Unfortunately, many large-scale HPC systems’ log files are not publicly available
due to the confidentiality of this data Therefore, there are few studies that perform log
analysis on large-scale HPC systems.

6 EVALUATING THE RELIABILITY OF GPUS VIA FAULT INJECTION

Although the studies we focus on in this work are regarding field data analysis, as a result of
our literature review, we have seen that the number of such studies is very limited especially for
systems containing GPUs. One of the many reasons for this may be that it is arduous and expensive
to perform such an analysis, especially for large-scale systems. However, the analysis of real data
is more confident and allows us to evaluate the system in actual cases. On the other hand, field
data analysis studies do not contain any information about silent error (SDC) rates. And without
SDC rates, we cannot fully evaluate the impact of soft errors on applications. Furthermore, since
field data analysis studies do not cover SDC rates, the soft error rates presented in these studies
are below their real amounts [86].

Therefore, in this section, we will evaluate the findings of studies investigating the reliability of
GPUs through fault injection experiments. Our goal is to understand the real impact of soft errors
on GPU applications.

FI is a simple but useful method by which we can analyze the faults that cause application
failures (i.e., incorrect output, hang, or crash). Fault injection experiments are performed by in-
tentionally flipping a randomly selected bit over, from a running application. If an injected fault
causes an incorrect output without any error message or indication, we count this error as a silent
error.

In the literature, there are few fault injection studies for GPUs. These have performed FI experi-
ments by using different methodologies at different levels. We have summarized the fault injection
studies in Table 4. For each study, the table contains the major findings of the studies, GPU card
models, fault injection locations, and applications used during the fault injection experiments.
When analyzing fault injection works, we take heed of findings rather than the methods used. We
specifically focus on SDC rates of GPU structures, the fault propagation rates in GPU structures,
and application failure rates (hang, crash, or SDC). We present similar studies together.

6.1 Fault Injection Challenges in the Context of GPUs

The significant outcomes reached with the analysis of fault injection studies can be listed as
follows:

Coverage Problem: In general, this is one of the most important problems of FI studies. In
order to achieve statistically acceptable results, it is necessary to inject a sufficient amount of fault.
Particularly in general-purpose GPU applications, fault-injected sites of applications are important
because they should be fully representative of the application and fault modes. They should also
cover all instruction types or execution paths that the application contains.

A general-purpose GPU application can contain thousands of threads since it provides extreme
parallelism. Since FI is a very time-consuming process, it is not possible to inject faults into all
threads. That’s why we have to choose where to inject the faults. However, when making this
selection, we should make sure that we select samples from different parts of the application that
will cover all application features and elements, because this will affect the accuracy of the results.

For this problem, two different solutions have been proposed in the literature: first, with
the help of some application information, statistically selecting fault injection fields from the
application [45, 46], and second, simply, grouping threads according to the number of instructions
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Table 4. Summary of Fault Injection Works

Ref. GPU Card Benchmarks
Injected

Locations
Major Findings

[45]
[46]
[106]

Tesla K20
and K10
with CUDA
6.5 and 7.0

16 applications
from Rodinia
benchmark

“Condition code,
predicate and
general purpose
registers”

7% of injected faults on average lead to
SDCs. 79% of injected faults do not
affect application outputs. The number
of SDCs is increasing as “the number of
bit-flips” increases.

[29]
[28]

Tesla C2075
with CUDA
4.1

“AES, matrixMult,
MUMmerGPU,
B-First, LIBOR
MonteCarlo”

Destination
register

The failure type occurring the most is
crash (18%–50%); the second type is
SDC (8%–40%). Matrix multiplication
and AES encryption have the first and
second highest SDC rates, respectively.

[12] Nvidia
GT200

“Histogram, Matrix
mult. Mergesort,
Reduction, Scaler
prod. Scan,
Transpose, Vector
addition”

Register file They compared the CPU and GPU.
They observed that the number of
SDCs in GPUs is about 4 times higher
than in CPUs.

[26]
[34]
[27]

Tesla C
series

14 applications
from “Parboil,
Rodinia
Benchmarks and
CUDA SDK pkg.”

Destination
register, address
register

In some applications, failure rates are
higher than 90%. At most, crash rate is
71% and SDC rate is 38%. HashGPU has
the highest SDC rate, while
MonteCarlo has the lowest SDC rate.

[116] AMD
Radeon
HD5870 and
AMD
Radeon
7970

8 applications from
AMD OpenCL SDK
and 14 applications
from
AMD-APP-SDK

“Register file,
local memory,
active mask
stack”

They have performed a statistical fault
injection to evaluate AVF of some GPU
structures. They found that two GPU
structures, i.e., local memory and
register file, have lower AVF than CPU
structures (register and cache).

[115] GeForce
GTX480

12 applications
from “Rodinia
benchmark,
ispass2009
benchmarks, CUDA
SDK package”

“Register file,
shared memory,
SIMT stack,
instruction
buffer”

The silent error rates of all applications
except two, i.e., Kmeans and
MergeSort, are higher than the
detectable uncorrectable error rates.
Although any fault in instruction
buffer can lead to SDCs easily, they
have not encountered any SDC in the
instruction buffer either.

[123] Tesla S1070 7 applications from
Parboil and 2
applications from
GPU-SDK

Selected virtual
variables
(ALU/FPU
register)

An injected fault into a FP, pointer, or
integer may cause an SDC (“with 39%,
18%, 45% average possibility,”
respectively). However, failures are
mostly caused by integer and pointer
errors.

[85] Nvidia
Kepler K20
and K40

8 applications from
different
benchmarks
(Hotspot, LuD, NW,
lavaMD,
ACCL,LULESH,
MSort, QSort)

Register file,
instruction
outputs

An injected fault with a random value
leads to lower PVF and AVF for
Mergesort and Quicksort than an
injected fault with a single-bit flip.
There is no significant difference
between the two injection modes
(random value/single-bit flip) for AVF
and PVF values of other applications.

ACM Computing Surveys, Vol. 53, No. 1, Article 22. Publication date: February 2020.



22:20 N. Cini and G. Yalcin

and selecting enough threads from each group [26, 34]. However, we do not know how these two
different approaches affect the results.

Injected Levels: Some GPU FI studies in the literature perform the FI experiments at the archi-
tectural level due to scalability concerns [26, 34, 45, 46]. Conversely, some studies [12, 29, 115, 116]
perform FI at the microarchitecture level. The microarchitecture level provides flexibility because
it does not require a real hardware and allows very detailed analysis. On the other hand, perform-
ing FI experiments at the architectural level, namely on real hardware, is more time efficient since
it allows more coarse-grained analysis than the microarchitecture level. Given the scale and level
of parallelism of GPU applications, it is important to be able to conduct FI experiments through
less time-consuming means.

Analyzing Methodology: Studies in the literature try to understand the failure behaviors of
general-purpose GPU applications by analyzing the results of FI experiments. However, studies
lack a systematic methodology. Many studies emphasize that SDC rates (0% to 40%) vary greatly
from application to application [26, 27, 29, 34]. However, in the literature, we did not find a com-
prehensive and systematic study that tries to understand the causes of differences in SDC rates or
crash rates. Only a few studies indicate that applications can be classified according to SDC rates
[26, 27]. However, one of these works does not suggest a classification method, yet the method
suggested by the other work is quite inadequate.

Because the behaviors of CPU and GPU applications are very different from each other, knowing
specific behaviors of GPU applications can help to develop application-specific fault tolerance
methods [27, 29]. Therefore, more detailed studies are needed for GPUs.

The following questions need to be addressed with FI experiments:

• Is the only reason for differences in SDC rates the features of the applications? If we use
different injection methods and tools, can we observe a significant change in SDC rates? To
what extent does the hardware affect SDC and crash rates?

• Do the injected locations (destination register, condition code, shared memory), instruction
types, or execution paths affect the rates of SDC and crash? Do the faults injected into the
functional or control units cause more SDCs or crashes than those injected into memory?

• Which fault is more likely to spread or cause more errors? Can we identify the “fault-error-
failure chains” of injected faults? Are there any distinctive, specific patterns between faults
and failures?

• Which characteristics of applications may affect SDC and crash rates and to what extent?
Can we develop a method for testing this?

7 RELIABILITY SCHEMES FOR HETEROGENEOUS HPCS

In general, homogeneous systems are more stable than heterogeneous systems since they are ana-
lyzed more and their error behaviors are well known. Today, almost all fault tolerance mechanisms
that are used in heterogeneous systems are designed and optimized for homogeneous systems [4,
19, 56, 76]. However, there are many differences between homogeneous and heterogeneous sys-
tems in terms of architecture and execution models; therefore, it is unlikely that the technologies
used in homogeneous systems will be fully compatible with the heterogeneous systems.

Since the integration of GPUs in HPCs is quite fast, the reliability requirements of heterogeneous
HPCs were compensated with the technologies borrowed from homogeneous HPCs. Since GPUs
did not have to be highly reliable before they were used for general purposes, they have not been
analyzed adequately and fault tolerance mechanisms specific for these processors have not been
developed. But the reliability challenges of GPUs are increasing in terms of both software and
hardware, because of use today for mission-critical tasks in HPCs.
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Furthermore, in next-generation HPCs, as the share of GPUs and the amount of usage increase,
systems will be more prone to soft errors and the GPU-related failure rate will increase signifi-
cantly. This suggests that fault tolerance mechanisms specific to next-generation heterogeneous
systems should be developed. Especially when considering the increasing size of HPCs, it is em-
phasized that low-overhead fault tolerance approaches are needed in order not to reduce system
performance. Because of the increasing failure rates in long-running applications, the fault toler-
ance techniques used today will not work in the future.

Today, the most common fault tolerance technique for HPCs is Checkpoint/Restart (or Recov-
ery) (CR). Although this technique is fairly simple, it is a fundamental fault tolerance mechanism
especially used to prevent failures of long-running applications. In this technique, the stable states
of a running application are periodically backed up to a reliable storage. When an error occurs,
the application returns to its last stable point and restarts from that point. Thus, the part of the
application that already finished correctly is recovered. Though its idea is straightforward, it has
some difficulties in practice. Many studies such as [14, 56, 76] have tried to eliminate its difficulties
in order to use this technique efficiently in next-generation systems, but few studies have been
tried to adapt this technique to GPU-based systems [35, 51, 70].

In this section, we will provide an overview of the CR models developed for GPU-based HPCs.

7.1 Checkpoint/Recovery Schemes for GPU-Based Heterogeneous Systems

Despite the fact that CR is a prevalent and basic fault tolerance technique [100] in HPCs and
many different implementations for homogeneous systems have been proposed, we have found
few CR models in the literature for heterogeneous systems. In this section, we list the CR schemes
developed for GPU-based heterogeneous systems.

7.1.1 HiAL-Ckpt. GPUs and CPUs have different MTBF values since their reliability attributes
are rather diverse. So it is necessary to set different checkpoint intervals for CPU and GPU accord-
ing to their MTBFs. Since CPUs are more reliable, their MTBF values will be larger than GPUs’.
In other words, we need to define multiple GPU checkpoints between two CPU checkpoints. If
an error occurs on the CPU, this can lead to system failure, because the error can affect global
components. However, any error that may occur in the GPU causes only a local failure that will
affect the work on that GPU, unless it is an error affecting the shared components. However, in
both cases, the closest checkpoint for the GPU can be used for recovery. In HiAL-Ckpt, which pro-
vides an application-level checkpointing, while the necessary information at the CPU checkpoints
is copied to the disk, at the GPU checkpoints, data is stored in the CPU memory [120].

7.1.2 CheCUDA. To increase the reliability of GPU applications, the checkpointing mechanism
must be able to record GPU states. Thus, the GPU’s state changes can be tracked and used during
the recovery phase. CheCUDA is designed as “an add-on to the standard Berkeley Labs Checkpoint
Restart (BLCR).” CheCuda uses the basic CUDA driver API to track changes in GPU states. While
the CPU checkpoints are taken by BLCR, CheCuda only checks and records GPU states in the
software level. However, since the BLCR does not support GPUs, the GPU content must be saved
and deleted before the BLCR starts. During the recovery phase, CheCuda launches the application
running on the GPU from the nearest stable state using the stored information [108].

7.1.3 Hybrid Kernel Checkpoint. This model has been developed as totally transparent to the
programmer by taking advantage of the Single Instruction Multiple Threads feature of GPU ap-
plications. It combines “PTX stub inject technology and dynamic library hijack mechanism” to
provide in-kernel-state checkpointing. Thus, a noticeable error in the code running on the GPU
can be corrected by partially recomputing the region by following the internal state of the GPU.
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Hybrid Kernel Checkpoint periodically records “the current execution state of the GPU,” and in
the event of a failure, it performs the roll-back operations in order to return to the nearest stable
state [94].

7.1.4 CudaCR. This model proposes a scalable application-level CR scheme in order to save the
in-kernel state of the GPU. To be able to capture the computation states in each kernel, it converts
the GPU and CPU codes into new codes with the help of a precompiler. However, in order to make
this model work correctly and keep checkpoints consistent, all threads in the same block need to
be synchronized just before getting checkpoints. This is why the programmer should take care
when setting checkpoints’ location. An asynchronous checkpoint is possible among the blocks
because CUDA does not support synchronization of threads in different blocks. However, for this
to happen, threads in different blocks should not be allowed to modify the same global memory
location [77].

7.1.5 HeteroCheckpoint. This model presents a unified CR mechanism by combining the GPU-
CPU memory state. To ensure the coherence of the GPU-CPU combined memory state, we need
to synchronize all threads first. Then all the important variables related to the application must be
transferred from the device memory to the nonvolatile (NV) memory. However, some applications
may have multiple kernels, and some variables may not be modified throughout the kernels. To
reduce the effect of the memory bandwidth limit, these unmodified variables can be transferred
to NVM in parallel, while the application’s execution continues, before the checkpointing process
starts. This will reduce traffic between GDRAM and NVM. However, the programmer must specify
explicitly which variables will not modify any longer. Also, if a variable does not modify between
two checkpoints, it will not need to be copied again. Two-bit prediction based on the checksum
mechanism is proposed to figure out these unmodified variables [51].

7.1.6 PartialRC. In this model, the programmer inserts the “original FT-Sections” into the ap-
plication code running on a heterogeneous system, and the PartialRC compiler converts each of the
original FT-Sections into modified FT-Sections in order to follow up all GPU-operations executed
in the FT-Section, which is called “GPU-Op trace.” The GPU-Op trace and localization module
together provide the necessary information to determine the fault location and which GPU opera-
tions need to be repeated, if there are any errors in the calculations of the GPU. However, in order
to be able to perform “partial recomputing,” it is necessary to provide “precise error information”
for all incorrect GPU computations; this is the responsibility of the error detection mechanism
used in the system. Since they assume that “CPU is reliable,” they save the data in CPU memory
for all checkpoint operations [121].

7.1.7 Low-Overhead Diskless CheckPoint. It can be quite expensive to save the current state of
the large-scale scientific applications to the disk during checkpointing. It is clear that classic disk-
based checkpointing does not hold promise for future HPCs due to their increasing I/O bottleneck,
especially given that applications running on next-generation supercomputers will be larger. To
deal with this problem, Diskless CheckPoint proposes recording checkpoint data to memory. How-
ever, for this method to be feasible, it is necessary to increase the memory reliability by using repli-
cation or encoding techniques. However, while the replication method is not scalable for HPCs,
the encoding techniques are highly complex and time consuming. This model suggests using the
Reed-Solomon encoding technique, but it needs to be done in parallel with application execution
to be able to perform the encoding process faster. To do this, instead of using spare nodes, using
idle CPU cores or GPUs will help to overcome some drawbacks such as energy consumption and
scalability [35].
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7.1.8 Fault-Tolerant Software Framework for Memory. Although the new generation of GPU
DRAMs are protected by SECDED ECC, many of the works we also have presented here show
that SECDED ECC is inadequate for HPCs. This scheme presents a software-only fault tolerance
technique that can detect and correct bit-flip errors in GPU DRAMs. While encoding techniques
are used to detect the errors, a checkpoint model helps for the correction. Since correction is more
difficult than detection and takes more time, using encoding techniques in the correction process
can greatly reduce performance. That’s why this model keeps a copy of the GPU program data in
memory, and when an error is detected with a parity-based encoding, the GPU program is restarted
based on the data stored in memory [58].

8 CHECKPOINT/RECOVERY CHALLENGES AND OPPORTUNITIES

When we examine CR techniques in general, it can be said that everything we can count as chal-
lenges for homogeneous systems is also a challenge for heterogeneous systems, but heterogeneous
systems also have additional challenges.

8.1 Application-Level Checkpointing versus System-Level Checkpointing

Most of the checkpointing models developed for GPU-based heterogeneous systems have been
implemented as application/user-level checkpointing. The most important advantages of this are
flexibility and simplicity of implementation. At this level, however, the users or programmers are
responsible for choosing the optimum control points. Besides, the user/programmer must explicitly
specify which data will be copied during checkpointing. This is a burden for the programmer, but
this significantly reduces the size of the data to be backed up. Given that most GPU applications
have their own inherent error characteristics, application-level checkpointing can improve the
performance of these applications. However, we think that it is very difficult to determine the
optimum control points, especially by the user. Intelligent methods are needed to automatically
pick control points at the most appropriate locations.

8.2 Where Will the Checkpointing Data Be Stored?

The memory in which the checkpointing data is stored must be fairly reliable so that the applica-
tion can continue from the previous stable state in the event of an error. However, today’s HPC
applications generate quite large amounts of checkpointing data. Writing this amount of data to
remote storage causes the checkpointing time to increase significantly and the performance of the
application to decrease dramatically. This is a bigger problem for heterogeneous HPCs because
they have a more complex memory hierarchy than homogeneous systems and limited data trans-
fer bandwidth despite the rapid increase in GPU memory capacity. Since the CPU is more reliable
than the GPU, GPU checkpointing data is recommended to be stored in the CPU memory, but if
the data transfer quality is not at the desired level for next-generation HPCs, it will not be possi-
ble to implement such models for applications that generate large amounts of data. Due to both
scalability and reliability issues, GPU checkpointing data stored in GPU memory does not seem
to be a viable solution either. To solve this problem, additional solutions either in software or in
hardware are needed to increase the GPU data transfer bandwidth and memory reliability. Sug-
gested approaches such as “incremental checkpointing” to improve data transfer speed and reduce
runtime overhead of the applications may work if they can be implemented for GPUs. Also, if the
computation can safely continue during the checkpointing, the application performance will not
be significantly affected by checkpointing burdens.
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8.3 In-Kernel CR or Out-of Kernel CR

GPU applications can perform massive amounts of computation in parallel. This advantage, which
increases the GPU’s application performance, can become a disadvantage at the same time as this
can lead to a significant loss in the event of an error. In classic CPU-based checkpointing models,
an error in a GPU thread causes thousands of threads’ tasks to recalculate unnecessarily, because
these types of checkpointing models cannot monitor and catch GPU internal states. “The device
code running on the GPU is called kernel” [94]. Although kernels are initialized and controlled
by the CPU, all calculations are done and the results are generated within the GPU. However,
the GPU communicates with the CPU only 2x during the whole process: at the very beginning
to get the data to be processed and to transfer the results of the calculations to the CPU. All of
this shows us that we need to trace and record GPU states, regardless of the CPU, during the
kernels’ execution. Implementing this model, called “in-kernel checkpoint,” is a real challenge due
to the inherit complex nature of GPU applications. We can say that getting GPU internal states in
arbitrary time is quite troublesome when we consider a number of factors, such as that most GPU
applications have multiple kernels, variable values can be changed in different kernels, and though
threads in all blocks can access global memory without restrictions, synchronization of threads in
the same thread block is allowed but synchronization of threads in different blocks is not allowed.
On CPUs, many operations can be performed automatically (for instance, application page-level
information can be tracked easily) unlike GPUs; therefore, GPUs need some additional software-
based solutions. Moreover, “the lack of direct I/O access” [51] from the GPU and the inability to
efficiently obtain the GPU’s internal state make it difficult to develop a GPU-specific CR model.
As a result, there is no standard low-overhead in-kernel checkpoint scheme for GPU-based HPCs.

8.4 GPU Error Detection

Apart from CR systems in the literature, there are few error detection and recovery proposals
developed for general-purpose GPUs. We do not think hardware-based ones [92] are applica-
ble for today’s HPCs because of the need for extra hardware support. Software-based ones [23,
58, 59] usually use coding or application-level techniques (i.e., executing a redundant copy of an
application).

Although it is easier to detect the error than to correct the error, we know that the techniques
used for fault detection have a negative impact on performance. Checkpoint schemes used for er-
ror recovery cannot detect errors. Therefore, these models are designed by combining with error
detection techniques. Nowadays it is impossible to detect faults that occur in some components
of GPUs such as logic and computational units, warp schedulers, dispatcher units, control data
paths, and interconnect networks due to lack of hardware-based fault tolerance technologies ex-
cept hardware ECC, which can detect bit-flip faults in DRAM, register files, and cache. For this
reason, software-based approaches that are implemented with encoding techniques are used to
detect these faults. However, encoding techniques are both very complex and time consuming.
Since the amount of checkpointing data is ultra-large, coding techniques can significantly reduce
performance.
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9 SUMMARY

Table 5. Summary of Research Works

Ref. Category Short Description

[88] Evaluation of the Reliability of
Homogeneous HPCs

They presented statistical analysis results of error
logs of 22 HPC systems with different sizes and
hardware specifications.

[25] Evaluation of the Reliability of
Homogeneous HPCs

They analyzed the failures of 10 HPC clusters. They
focused on correlations between failures.

[42] Evaluation of the Reliability of
Homogeneous HPCs

They analyzed system logs to identify failures;
suggests a reliability model by exploiting the
underlying statistical properties of events.

[102] Evaluation of the Reliability of
Homogeneous HPCs

They analyzed DRAM errors “in a large
high-performance computing cluster.”

[103] Evaluation of the Reliability of
Homogeneous HPCs

They examined the effect of aging on DRAM faults.
This study also examined SRAM faults.

[101] Evaluation of the Reliability of
Homogeneous HPCs

In particular, they examined the efficiency of error
correction codes. They note that SECDED ECC is
very inadequate for modern DRAMs.

[7] Evaluation of the Reliability of
Homogeneous HPCs (Although the
system used in this study has one
GPU, it is not clear whether logs of
this part were analyzed. Also, they
didn’t present any result related with
GPUs.)

They analyzed the memory error logs, which are
obtained from an unprotected system. This means
that the error correction mechanism is disabled in
the system. In this way, any kind of error in memory
can be recorded [103]. They found that memory
errors had high temporal and spatial correlations.

[49] Evaluation of the Reliability of
Homogeneous HPCs

This work deals with hard errors. Several findings of
this study indicate that the main cause of memory
errors is hard errors, not soft errors.

[57] Evaluation of the Reliability of
Homogeneous HPCs

They analyzed failure logs gathered from three
HPCs

[79] Evaluation of the Reliability of
Homogeneous HPCs.

They analyzed the system logs to figure out the
reliability of the system that contains the k nodes.

[17] Evaluation of the Reliability of
Homogeneous HPCs

They analyzed logs from two large-scale systems in
order to characterize DRAM and SRAM faults.

[71] Evaluation of the Reliability of
Homogeneous HPCs

They analyzed log files of five HPCs with different
features. They especially deal with challenges of
distinguishing critical events from others.

[47] Evaluation and Improvement of the
Reliability of Homogeneous HPCs

They analyzed the error logs of an HPC for 5 years
in order to understand characteristics of HW
failures (“processors, memory, storage and network
components”).

[6] Evaluation and Improvement of the
Reliability of HPCs

In this study, the failure logs of five systems were
analyzed in order to understand which type of
failures caused a change in the state of the system.
Two of these systems are heterogeneous and three
of them are homogeneous systems.

[30] Evaluation of the Reliability of HPCs They have defined failure scenarios by analyzing a
heterogeneous system.

(Continued)
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Table 5. Continued

Ref. Category Short Description

[107] Evaluation of the Reliability of
Homogeneous HPCs

In this study, the system logs of a homogeneous
supercomputer were analyzed.

[89] Evaluation of the Reliability of
Homogeneous HPCs

They analyzed systems that have different
technologies, and with the development of
technology, they concluded that systems with
newer hardware technologies are not necessary
to be more reliable.

[36] Evaluation of the Reliability of
Homogeneous HPCs

They focused on failures that occur on one node
and do not spread to other nodes. They analyzed
the TBF distributions of the nodes to understand
the failure behavior of each node.

[37] Evaluation of the Reliability of
Homogeneous HPCs

In order to estimate the time interval between
two successive system failures, they analyzed
individual failure data of the nodes.

[118] Evaluation of the Reliability of
Homogeneous HPCs

This study is particularly focused on hardware
failures. They examined roughly 290,000
hardware failures collected from several systems
with different configurations.

[111] Evaluation of the Reliability of
Homogeneous HPCs

They examined failure data from a homogeneous
HPC in order to understand correlated failures.

[40] Evaluation of the Reliability of HPCs They analyzed log files of five HPCs. One of them
is a GPU-based HPC. They observed that “the
temporal recurrence property” was different for
different types of failure but similar among the
systems. And they found that “the spatial
distribution of failures is not uniform” at any
compute granularity across systems.

[67] &
[112–
114]&
[41]

Evaluation of the Reliability of
Heterogeneous HPCs

They explored and described several types of soft
errors on a large-scale GPU-based HPC (Titan).
Particularly, they focus on GPU errors.

[22] Evaluation of the Reliability of
Heterogeneous HPCs

They examined 261-day failure data of a petascale
GPU-based heterogeneous system (BlueWaters).

[34] Evaluation of the Reliability of
Heterogeneous HPCs

This work analyzes the results of some
experimental research on GPGPUs’ reliability.
They compared a homogeneous and a
GPU-based heterogeneous system.

[8] Evaluation of the Reliability of
Heterogeneous HPCs

They investigate the effect of ECC errors on
molecular dynamics (MD) simulations. Because
the ratio of ECC errors (corrected or not
corrected) on GPUs is unknown, this work
explores the sources and effects of ECC errors.

[68] Evaluation and Improvement of the
Reliability of Heterogeneous HPCs

Analyzing the error data of a GPU-based
large-scale heterogeneous system, they tried to
understand the relationship between
temperature, power consumption, and GPU soft
errors. They focus on only single-bit errors (SBE).

(Continued)
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Table 5. Continued

Ref. Category Short Description

[69] Evaluation and Improvement of
the Reliability of Heterogeneous
HPCs

Similar to the previous study [68], they focused on
GPU SBEs and they used the same data. They tried to
present a model to predict SBEs.

[54] Evaluation of the Reliability of
Homogeneous HPCs

They analyzed the fi5-year data collected from a
homogeneous system. They are particularly focused
on correctable and uncorrectable memory errors.

[96] Evaluation of the Reliability of
Homogeneous HPCs

They analyzed the DRAM and SRAM errors collected
from a production system. The analysis was
performed using two of the data sources used in the
previous study [54].

[95] Evaluation of the Reliability of
Homogeneous HPCs

They analyzed corrected memory errors. Unlike
other studies, they analyzed errors that occur in
other memory components. These are “memory
controllers, buses, channels, and memory modules.”
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