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cough, fever, and flu-like symptoms upon infection, with the 
potential for severe complications such as pneumonia dif-
ficulty breathing, and in some cases, death. The healthcare 
systems of nations worldwide, including those considered 
highly developed, faced significant challenges as a result. 
Many countries implemented measures such as curfews, 
online schooling and work arrangements, and advisories 
for individuals to stay home and avoid contact with others. 
Additionally, large-scale interventions such as mask man-
dates, and restrictions on inter-city and international travel, 
were enacted to control the spread of the virus (Gülmez 
2023a; Cheng et al. 2020; Coxon et al. 2020).

Identifying individuals with COVID-19 is a critical 
aspect of combating the spread of the virus. Polymerase 
chain reaction (PCR) testing is commonly employed for 
this purpose. However, there is a consensus among medical 
professionals and experts that the reliability of PCR test-
ing may be limited. It is not uncommon for these tests to 
yield false results, either indicating positive cases as nega-
tive or vice versa. As an alternative, clinicians may turn to 
radiological findings and chest X-ray images of patients as 

1 Introduction

The coronavirus emerged in Wuhan, China, in December 
2019. In February 2020, the World Health Organization 
(WHO) officially designated it as COVID-19, and WHO 
recognized it as a public health emergency. Subsequently, 
in March 2020, it was declared a global pandemic. (Kim 
2021). Throughout the pandemic, the impact of COVID-19 
varied significantly across different regions of the world, 
with notable effects observed in the United States, Italy, 
and Spain. One of the key characteristics of COVID-19 is 
its rapid spread, facilitated by easy transmission from per-
son to person. Symptoms of COVID-19 typically include 
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Abstract
The coronavirus occurred in Wuhan (China) first and it was declared a global pandemic. To detect coronavirus X-ray 
images can be used. Convolutional neural networks (CNNs) are used commonly to detect illness from images. There can 
be lots of different alternative deep CNN models or architectures. To find the best architecture, hyper-parameter optimi-
zation can be used. In this study, the problem is modeled as a multi-objective optimization (MOO) problem. Objective 
functions are multi-class cross entropy, error ratio, and complexity of the CNN network. For the best solutions to the 
objective functions, multi-objective hyper-parameter optimization is made by NSGA-III, NSGA-II, R-NSGA-II, SMS-
EMOA, MOEA/D, and proposed Swarm Genetic Algorithms (SGA). SGA is a swarm-based algorithm with a cross-over 
process. All six algorithms are run and give Pareto optimal solution sets. When the figures obtained from the algorithms 
are analyzed and algorithm hypervolume values are compared, SGA outperforms the NSGA-III, NSGA-II, R-NSGA-II, 
SMS-EMOA, and MOEA/D algorithms. It can be concluded that SGA is better than others for multi-objective hyper-
parameter optimization algorithms for COVID-19 detection from X-ray images. Also, a sensitivity analysis has been made 
to understand the effect of the number of the parameters of CNN on model success.
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supplementary diagnostic tools in cases where PCR testing 
results are uncertain. (Osman et al. 2020; Alhudhaif et al. 
2021).

With the advent of computers and technology, x-ray 
images may be used to diagnose sickness using artificial 
intelligence approaches. In medicine, artificial intelligence 
is frequently used. The development of CNN and deep 
learning models has made it quite simple to extract data 
from photos. Additionally, great rates of precision may be 
attained. Classical machine learning approaches have diffi-
culties with visual data. This issue has been resolved thanks 
to CNN (Gupta et al. 2021).

When creating deep neural networks, several choices are 
possible. There are several variables, such as the network’s 
depth, the number of neurons in each layer, the kinds of lay-
ers, and the parameters. Therefore, there are an infinite num-
ber of options. Typically, researchers use their expertise and 
the trial-and-error technique to identify the optimal mesh. 
In addition, metaheuristic algorithms may be used to make 
excellent decisions amongst various possibilities (Xu et al. 
2014). In daily life, decision-makers are often required to 
make choices with many objectives in mind. Typically, it 
is really difficult to make a solid choice, and the decision-
maker needs certain decision-making aids. Moving to a bet-
ter decision point for an existing choice than any objective 
is deemed a good option if at least one of the other goals 
cannot be reached without deterioration. Decision support 
techniques provide these excellent decisions to the user, 
who then picks one. Effective decision support mechanisms 
should provide the user with excellent choices in a fair 
period of time. MOO issues are those in which many objec-
tive functions are in competition with one another (Igel 
2005; Ortaçay 2020).

Artificial intelligence (AI) has various application areas 
(Gülmez 2022a, 2023b, c; Gülmez and Kulluk 2023). CNN 
is a part of AI (Gülmez 2024). CNN models can be used 
for detecting COVID-19 from medical images such as chest 
X-rays. These models are trained on datasets of images to 
learn patterns associated with the disease, aiding radiolo-
gists and clinicians in diagnosis. Ongoing research aims 
to improve the accuracy and reliability of CNN-based 
approaches for COVID-19 detection. Less parameterized 
models, often referred to as simpler models, offer several 
advantages over their more complex counterparts in deep 
learning. These models require reduced computational 
resources for training, inference, and deployment. This leads 
to significant savings in terms of time, energy, and infra-
structure costs, particularly beneficial when working with 
large datasets or deploying models on resource-constrained 
devices such as mobile phones or edge devices. Simpler 
models typically train faster compared to larger models due 
to their fewer parameters. This accelerated training process 

enables quicker experimentation and iteration, facilitat-
ing rapid prototyping and development of machine learn-
ing solutions. Simpler models are less prone to overfitting, 
a phenomenon where the model learns to memorize the 
training data rather than generalize to unseen data. Over-
fitting often occurs in highly parameterized models due to 
their increased capacity to capture complex patterns in the 
training data. Less parameterized models have a reduced 
capacity for memorization, leading to better generalization 
performance on unseen data. Simple models are often more 
interpretable and easier to understand compared to complex 
models. With fewer parameters, the decision-making process 
of the model becomes more transparent, allowing humans to 
comprehend how the model arrives at its predictions. This 
interpretability is particularly valuable in domains where 
model transparency and trust are critical, such as healthcare 
and finance. In scenarios where labeled data is limited or 
expensive to obtain, simpler models can be advantageous. 
These models tend to require less labeled data for training 
and can achieve competitive performance with smaller data-
sets. This property is especially relevant in niche or special-
ized domains where collecting large amounts of labeled data 
may be impractical or infeasible. The preference for sim-
pler, less parameterized models stems from their efficiency, 
robustness, interpretability, and ability to generalize well 
to new data, making them a compelling choice in various 
machine learning applications (Gülmez and Kulluk 2019; 
Gülmez 2022b, 2023a, d).

In this paper, we address the challenge of enhancing 
the robustness and performance of neural networks in the 
presence of various disruptions and constraints. Song et 
al. (2023b) investigate event-triggered state estimation for 
reaction-diffusion neural networks (RDNNs) in the presence 
of Denial-of-Service (DoS) attacks, proposing a switching-
like event-triggered strategy (SETS) to mitigate intermittent 
attacks while maintaining system performance. Zhuang et 
al. (2023) present an optimal ILC algorithm tailored for lin-
ear systems with nonuniform trial lengths and input con-
straints, offering improved constraint handling capabilities 
and monotonic convergence properties. Song et al. (2023a) 
explore bipartite synchronization for reaction-diffusion 
neural networks with cooperative-competitive interactions, 
leveraging a dual event-triggered control mechanism to 
reduce resource consumption while ensuring synchroniza-
tion. By integrating insights from these diverse methodolo-
gies, we aim to contribute to the development of robust and 
efficient neural network systems capable of withstanding 
disruptions and constraints in real-world scenarios.

In this research, a deep CNN network is used to iden-
tify COVID-19. This deep artificial neural network is dis-
covered with the MOO algorithms consisting of NSGA-II, 
NSGA-III, R-NSGA-II, SMS-EMOA, MOEA/D, and the 
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proposed Swarm Genetic Algorithm (SGA). Three objec-
tive functions are used for the MOO problem. They are 
multi-class cross entropy, error ratio (1-accuracy), and com-
plexity of the network. The aim is to minimize multi-class 
cross entropy, minimize error ratio, and minimize the com-
plexity of the network.

This paper introduces a novel contribution to the field 
through the development of a bespoke multi-objective hyper-
parameter optimization algorithm specifically designed for 
COVID-19 detection from X-ray images. While CNNs are 
commonly utilized for image-based disease detection, the 
novelty of this approach lies in the integration of MOO prin-
ciples to identify optimal CNN architectures. By considering 
objective functions such as multi-class cross entropy, error 
ratio, and CNN network complexity, the algorithm enables 
the simultaneous optimization of multiple performance met-
rics, thereby enhancing the robustness and generalizability 
of COVID-19 detection models. The comparative analysis 
with existing algorithms, including NSGA-III, NSGA-II, 
R-NSGA-II, SMS-EMOA, and MOEA/D, highlights the 
superior performance of our proposed SGA, underscoring 
the novelty and effectiveness of our approach in the context 
of COVID-19 detection from X-ray images. This paper rep-
resents a novel contribution to the field of medical imaging 
and deep learning-based disease diagnosis, with potential 
implications for improving healthcare outcomes and pan-
demic response strategies.

2 Literature review

In recent years, the field of multi-objective optimization has 
witnessed a surge in the development of novel algorithms 
aimed at efficiently solving complex real-world engineering 
problems. Rahman et al. (2022) demonstrated competitive 
performance against established algorithms such as Multi-
Objective Water Cycle Algorithm (MOWCA), NSGA-II, 
and Multi-Objective Dragonfly Algorithm (MODA), partic-
ularly showcasing superior solution quality in certain sce-
narios such as coil compression spring design. Abdullah et 
al. (2023) introduce the MOFDO algorithm, a multi-objec-
tive variant of the Fitness Dependent Optimizer, equipped 
with comprehensive knowledge types. Evaluations on stan-
dard benchmark functions and real-world engineering prob-
lems, including welded beam design problems, demonstrate 
MOFDO’s effectiveness in providing diverse and well-dis-
tributed feasible solutions. Comparative analyses against 
state-of-the-art algorithms like NSGA-III and Multi-Objec-
tive Dragonfly Algorithm underscore MOFDO’s competi-
tiveness and efficacy across various optimization scenarios. 
These advancements highlight the importance of continu-
ously exploring innovative optimization methodologies to 

address the evolving challenges posed by complex engi-
neering problems.

The COVID-19 pandemic has brought significant chal-
lenges to various aspects of society, including healthcare, 
communication systems, and face recognition technology. 
Researchers have responded to these challenges by propos-
ing novel methodologies and frameworks aimed at improv-
ing diagnostic accuracy, optimizing resources, and adapting 
to the new normal of mask-wearing. This literature review 
explores eight recent studies that contribute to these efforts.

Sayed (2022) introduced a hybrid approach, RSO-
AlexNet-COVID-19, combining the rat swarm optimizer 
(RSO) and convolutional neural network (CNN) for the 
automated diagnosis of COVID-19 using CT and X-ray 
images. The study achieved a remarkable overall classifica-
tion accuracy of 100% for CT images and 95.58% for X-ray 
image datasets, outperforming other CNN architectures.

Akingbesote et al. (2023) proposed a Pareto-optimized 
FaceNet model with data preprocessing techniques to 
enhance face recognition accuracy, particularly in the con-
text of mask-wearing during the COVID-19 pandemic. The 
study demonstrated superior performance in recognizing 
both masked and unmasked faces, offering implications for 
real-world applications.

Dhiman et al. (2022) presented ADOPT, an automatic 
deep learning and optimization-based approach for COVID-
19 detection using X-ray images. The study employed 
multi-objective optimization and deep learning techniques, 
achieving significant advancements in classification accu-
racy compared to existing methods.

Hajiakhondi-Meybodi et al. (2021) addressed the need 
for trustworthy and time-varying connection scheduling in 
wireless networks during the pandemic. Their framework, 
CQN-CS, utilized deep reinforcement learning to opti-
mize connection scheduling between Femto Access Points 
(FAPs) and Unmanned Aerial Vehicles (UAVs), improving 
network performance metrics.

Kiziloluk and Sert (2022) proposed COVID-CCD-Net, 
a CNN-based system for the diagnosis of COVID-19 and 
colon cancer using chest X-ray and tissue microarray (TMA) 
images. Their approach optimized CNN hyperparameters, 
achieving accurate classification of COVID-19, normal, 
and viral pneumonia cases, as well as different regions in 
colorectal cancer images.

Shukla et al. (2021) developed a multiobjective genetic 
algorithm combined with a CNN for automated COVID-
19 identification in chest X-ray images. The study dem-
onstrated improved diagnostic accuracy, suggesting the 
model’s potential for real-time testing of patients.

Mohammedqasem et al. (2023) proposed a deep learning 
framework for medical datasets with high missing values, 
particularly focusing on COVID-19 diagnosis. Their hybrid 
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chest X-ray images. Their technique outperformed existing 
methods in terms of accuracy, precision, and F-score, show-
casing its potential for diagnosing lung diseases, including 
COVID-19.

3 Algorithms

In this section, the algorithms and methods used in this 
paper are explained. They are MOO, NSGA-II, NSGA-
III, R-NSGA-II, SMS-EMOA, MOEA/D, SGA, and CNN 
subsections.

3.1 Multi-objective optimization

Despite the fact that certain real-world situations may be 
reduced to a single purpose, it is sometimes difficult to char-
acterize all elements in terms of a single objective. Multiple 
goals often provide a clearer picture of the work. MOO has 
been accessible for almost two decades, and its applicability 
to real-world issues is continually expanding. In contrast to 
the abundance of approaches available for single-objective 
optimization, comparatively few strategies for MOO have 
been created. The search space in single-objective optimiza-
tion is often well-defined. Once there are many potentially 
contradictory goals to be optimized concurrently, there is 
no longer a single optimum solution, but rather a group of 
viable solutions of equal quality. When attempting to maxi-
mize many goals simultaneously, the search space becomes 
partly ordered. There will be a series of optimum trade-offs 
between competing goals in order to arrive at the ideal solu-
tion (Gülmez et al. 2024; Abraham and Jain 2005; Liang et 
al. 2019).

The MOO problem can be defined as (1) and (2) (Gunan-
tara 2018).

min ormax f1 (x) , f2 (x) , . . . , fn (x) (1)

subject to : x ∈ U  (2)

where x is solution variables, n is the number of objective 
functions, u is the feasible set, min and max are objective 
functions. In the MOO, there is a multidimensional space 
for the objective function vector and a multidimensional 
space for the solution vector in the decision variable space. 
In every x solution in the space of choice variables, there 
exists a point in the space of objectives. Figure 1 depicts 
the mapping between the solution vector and the objective 
function vector. (Gunantara 2018).

During optimization, the Pareto approach maintains 
the elements of the solution vectors are distinct (indepen-
dent), and the idea of dominance is used to distinguish 

approach, incorporating Data Missing Care (DMC) frame-
work and Grid-Search optimization, achieved high accuracy 
in classifying COVID-19 patients despite missing data.

Liu et al. (2024) introduced GrMoNAS, a granularity-
based multi-objective Neural Architecture Search (NAS) 
framework for efficient medical diagnosis. Their approach 
balanced diagnostic accuracy and computational efficiency, 
showing promising results across various medical scenar-
ios, including COVID-19 diagnosis.

Muthumayil et al. (2021) introduced a Multi-objective 
Black Widow Optimization-based Convolutional Neural 
Network (MBWO-CNN) technique for the diagnosis and 
classification of COVID-19 using X-ray and CT images. 
Their approach involved preprocessing, feature extraction, 
parameter tuning, and classification, achieving a remarkable 
accuracy of 96.43%.

Singh et al. (2021) proposed a deep neural network-based 
screening model using chest X-ray images for identifying 
COVID-19-infected patients. By tuning the hyperparam-
eters using Multi-objective Adaptive Differential Evolution 
(MADE), their model outperformed existing machine learn-
ing models in terms of various performance metrics.

Goel et al. (2022) presented Multi-COVID-Net, a two-
step deep learning architecture optimized using the Multi-
Objective Grasshopper Optimization Algorithm (MOGOA) 
for COVID-19 diagnosis from chest X-ray images. Their 
model demonstrated superior performance compared to 
state-of-the-art methods in classifying Non-COVID-19, 
COVID-19, and pneumonia patient images.

Çiğ et al. (2023) proposed an enhanced disease detec-
tion approach using Contrast Limited Adaptive Histogram 
Equalization (CLAHE) and Multi-Objective Cuckoo Search 
(MOCS) combined with Convolutional Neural Networks 
(CNNs). Their method achieved high accuracy rates in 
classifying chest X-ray images into healthy, unhealthy, and 
pneumonia categories.

Singha et al. (2022) introduced the Multi-Objective 
Black Widow Optimization-based Convolutional Neural 
Network (MBWO-CNN) method for diagnosing and clas-
sifying COVID-19 data. Their model, employing Extreme 
Learning Machine Auto Encoder (ELM-AE), achieved a 
maximum accuracy of 97.53%, showcasing its effectiveness 
in COVID-19 diagnosis.

Dhiman et al. (2021) proposed a Deep Learning and 
Optimization-Based Framework (DON) for the detection 
of COVID-19 using X-ray images. By employing multi-
objective optimization and J48 decision tree classification, 
their model demonstrated superior performance compared 
to other CNN-based approaches.

Rajagopal et al. (2023) developed a Deep Convolutional 
Spiking Neural Network optimized with Arithmetic Opti-
mization Algorithm (AOA) for lung disease detection using 
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minimum values of two-goal functions. Dominated 
points, non-dominated points, and utopia points can be 
seen in Fig. 2 (Gunantara 2018).

3.1.1 NSGA-II

NSGA-II is a widely used evolutionary algorithm for 
multi-objective optimization. It employs a non-dom-
inated sorting mechanism to rank candidate solutions 
based on their dominance relationships. By maintaining 
a diverse population of solutions through elitist selec-
tion and crowding distance calculation, NSGA-II ensures 
a well-distributed set of Pareto-optimal solutions. This 
algorithm iteratively evolves a population of candidate 
solutions through selection, crossover, and mutation 
operators, facilitating the exploration and exploitation of 
the search space. NSGA-II has been applied to various 

between dominated and non-dominated solutions. When 
one objective function cannot rise without decreasing 
the other objective function, the dominant solution and 
optimum value are often attained in MOO. This state is 
known as Pareto optimality. The collection of the best 
MOO solutions is known as the Pareto optimal solution. 
There is a phrase known as Pareto efficient or non-dom-
inated solution. A non-Pareto optimum solution is one in 
which one objective function may be enhanced without 
diminishing the other goal function. This is known as the 
dominant solution (inferior). It is theoretically solvable 
if a Pareto optimum solution can be identified. Several 
terms in the Pareto optimum solution must be recorded 
in the Pareto approach. These clauses are anchor points 
and utopia points. Anchor points may be acquired by 
an objective function’s optimal performance. The point 
of Utopia is found at the intersection of the maximum/

Fig. 2 Dominated, non-domi-
nated points, and utopia points 
(Gunantara 2018)

 

Fig. 1 Solution space and map to 
objective space (Lim et al. 2009)
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real-world optimization problems, including hyperparam-
eter tuning for machine learning models, where the objec-
tive functions are expensive to evaluate directly (Beume 
et al. 2007).

3.1.5 MOEA/D

MOEA/D is a decomposition-based evolutionary algo-
rithm specifically designed for solving multi-objective 
optimization problems. It decomposes the original prob-
lem into a set of scalar subproblems and optimizes each 
subproblem simultaneously using a cooperative coevo-
lutionary framework. MOEA/D maintains a population 
of solutions organized in subpopulations, where each 
subpopulation corresponds to a scalar subproblem. By 
balancing the exploration and exploitation of the search 
space through local and global search operators, MOEA/D 
effectively converges to a diverse set of Pareto-optimal 
solutions. This algorithm has been successfully applied 
to various optimization tasks, including hyperparameter 
optimization, where it efficiently explores the trade-offs 
between competing objectives to identify optimal model 
configurations (Zhang and Li 2007).

3.1.6 Swarm genetic algorithm (SGA)

Swarm Genetic Algorithm (SGA) is the new algorithm 
proposed for this problem. This is an algorithm based on 
a swarm. In every iteration, every member of the swarm 
moves, and then new members are created by the cross-
over stage of the genetic algorithm. It is the main idea of 
the algorithm.

Firstly, the number of members in the population should 
be determined. New solutions are created by population 
size. Every solution of the population is calculated and 
evaluated.

After the evaluation of every solution, the solutions 
are sorted by their objective values. The sorting is not the 
same every time, because this is a MOO problem, so the 
Pareto front is the same. The sorting is related to the sur-
face level. It cannot be said that exact differences in the 
Pareto front. Only the differences are determined between 
different levels of surfaces. The first and the best surface is 
the Pareto front surface. The Pareto front is in Fig. 3 with 
blue colored.

For every dominated solution that is not in the Pareto 
front, a random non-dominated solution is selected. Then 
the dominated solution moves to the selected non-domi-
nated solution. The moving process is (3). Figure 4 shows 
the movement.

optimization problems, including hyperparameter opti-
mization for machine learning models, demonstrating its 
effectiveness and versatility (Deb et al. 2002; Ortaçay 
2020).

3.1.2 NSGA-III

NSGA-III is an extension of NSGA-II that addresses the 
limitation of handling three or more objectives in multi-
objective optimization problems. It introduces a reference 
point-based approach to guide the evolution towards the 
Pareto front. NSGA-III partitions the objective space into 
hypercubes and selects individuals based on their prox-
imity to reference points, ensuring a balanced distribu-
tion of solutions across the Pareto front. By incorporating 
reference points dynamically and maintaining diversity 
in the population, NSGA-III enhances the convergence 
and diversity of solutions compared to NSGA-II, particu-
larly in problems with more than two objectives (Mutlu 
2021).

3.1.3 R-NSGA-II

R-NSGA-II is another variant of the NSGA-II algorithm 
that focuses on addressing the challenges of handling 
many-objective optimization problems. It extends the 
concept of reference points introduced in NSGA-III to 
efficiently manage multiple objectives. R-NSGA-II uti-
lizes a set of predefined reference points to guide the evo-
lution process towards the Pareto front while maintaining 
diversity in the population. By adaptively adjusting ref-
erence points and employing elitist selection strategies, 
R-NSGA-II effectively balances convergence and diver-
sity, making it suitable for complex optimization prob-
lems with numerous conflicting objectives (Filatovas et 
al. 2017).

3.1.4 SMS-EMOA

SMS-EMOA is a surrogate-assisted evolutionary algorithm 
designed for multi-objective optimization tasks. It lever-
ages surrogate models, such as Gaussian process regres-
sion, to approximate the objective functions and guide the 
search process efficiently. SMS-EMOA iteratively updates 
the surrogate model based on observed data points and 
focuses the search on promising regions of the objective 
space. By incorporating an elitist selection mechanism 
and adaptive sampling strategies, SMS-EMOA achieves 
a balance between exploration and exploitation, facilitat-
ing the discovery of high-quality Pareto-optimal solutions. 
This algorithm has demonstrated effectiveness in various 
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3.2 CNN

CNN is one of the most effective pattern recognition 
methods. A deep CNN typically consists of convolutional 
layers, pooling layers, and a fully connected layer. These 
structures apply locally learned filters to extract visual 
information from the input image. Pooling minimizes the 
size of the feature maps, which are subsequently used as 
the input images for the subsequent convolution. This pro-
cedure is continued until all deep features are extracted. 
Oftentimes, a classifier reaches a decision based on these 
features after completing these stages. A fully connected 
network acts as a classifier for these qualities, while con-
volutional processes are used to extract features from this 
structure. The completely linked component may end up 
having a SoftMax output layer for classification reasons. 
Using these layers, several significant network topologies 
have been developed, including AlexNex, Xception, and 
GoogleNet. Overfitting these structures during training is 
among the most serious concerns. Several methods have 
been proposed to prevent overfitting, including data aug-
mentation and dropout layers (Sarıgül et al. 2019). Fig-
ure 5 depicts a CNN sample.

Using a convolution layer, which is a structure com-
prised of a number of fixed-size filters, it is feasible 
to apply complex functions to the input image. Utiliz-
ing locally trained filters, this technique is carried out. 
This technique uniformizes the filter weights and biases 
throughout the whole image. This process, known as the 
weight-sharing mechanism, enables the representation of 
the same feature over the whole picture. The local recep-
tive field of a neuron is the area to which it was previously 
attached. The size of the receptive field is determined by 
the size of the filters. Let the size of the input picture and 
the size of the kernel, the image’s representation, and the 
weight and bias of the filter be and, respectively. ReLu or 
sigmoid activation functions may be employed to calcu-
late output (Sarıgül et al. 2019). Figure 6 depicts a typical 
convolutional layer.

Feature maps are subjected to convolution and activa-
tion functions prior to the pooling procedure. The smaller 
feature maps resulting from this technique provide sum-
maries of the input features. It moves a window over the 
picture to perform the selected action. The most frequent 
pooling techniques are maximum, average, and L2 pool-
ing. Averaging the input values produces an average 
pooling result, whereas maximization yields a maximum 
pooling result. The key advantages of pooling processes 
include reduced image size and independent extraction of 
visual components (Sarıgül et al. 2019). Figure 7 shows 
the maximum and average pooled samples.

xnew =
xold + xtarget

2
 (3)

After the movement of the solutions, the cross-over of 
the genetic algorithm is made. It is two points crossed 
over the classical genetic algorithm. So, new solutions 
are generated.

The elitist approach is chosen for the next generation. 
The best solutions live, and the worst solutions die. These 
procedures continue until the termination criteria.

Fig. 4 Movement of the dominated solutions

 

Fig. 3 The non-dominant solutions with blue color and the dominated 
solutions with red color
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of the dataset has 251 images. It has 111 COVID-19, 70 nor-
mal, and 70 viral pneumonia images. The test of the dataset 
has 66 images. It has 26 COVID-19, 20 normal, and 20 viral 
pneumonia images (Raikote 2020). The distribution of the 
dataset can be seen in Table 1.

Sample images from the dataset can be seen in Fig. 8.

4.2 Study

4.2.1 Evaluation metrics

The evaluation metrics employed in this study encompass 
multiclass entropy, accuracy, and network complexity. 
For multi-objective algorithms, the evaluation metrics 
are uniformly transformed into minimization criteria. 
Specifically, the multiclass cross entropy metric adopts 
a minimization objective, as indicated by its formulation 
(6). Conversely, accuracy, being a maximization metric, 
is converted into accuracy error through subtraction from 
1, as articulated in formula (4). The determination of net-
work complexity hinges upon the count of parameters 

After being twisted and aggregated, the data is reduced 
to a one-dimensional vector. As its input, the fully con-
nected network will use this vector. There may be one 
or more secret layers within the fully integrated system. 
Each neuron multiplies the connection weights by the 
previous layer’s data and adds a bias value to the connec-
tion weights. The decided value is transferred to the sub-
sequent layer through the activation function. The class 
is then established (Sarıgül et al. 2019).

4 Results and discussion

In this section, the dataset is introduced, and evaluation met-
rics are explained. Then, all the algorithms are evaluated and 
compared. Finally, sensitivity analysis for the results is made.

4.1 Dataset

In this study, a dataset consisting of 3 classes is used. The 
classes are COVID, normal, and viral pneumonia. The train 

Fig. 6 Convolutional layer 
sample (Lakhmiri et al. 2021)
 

Fig. 5 Convolutional neural network sample (Cho and Kim 2021)
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is utilized to gauge the discrepancy between predictions 
and actual values. Multi-class cross entropy, as denoted 
by formula (6), quantifies the disparity between predicted 
and actual probability distributions across multiple 
classes. In the formula, K is the number of the classes, yk 
is the true probability or distribution of the class k. This 
is the actual probability that the sample belongs to class 
k. ŷk is the predicted probability or distribution of the 
class k. This is the probability assigned to the sample by 
the model for belonging to class k.

within the networks, representing another minimization 
objective, elucidated in formula (5). The accuracy met-
ric, defined by the formula (4), calculates the proportion 
of true positive and true negative predictions against all 
predictions. Error ratio, computed as 1 minus accuracy, 

Table 1 Class distribution of the dataset
COVID-19 Normal Viral pneumonia Total

Train 111 70 70 251
Test 26 20 20 66
Total 137 90 90 327

Fig. 8 Sample images from the dataset

 

Fig. 7 Pooling layer sample (Yani 
et al. 2019)
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alternatives to detect classes. Sizes and parameters of the 
network are changed with MOO algorithms.

4.2.3 Parameter Alternatives

There are some parameters to train the CNN for COVID-19 
detection. The alternatives are seen in Table 2.

4.3 Results and comparison

In this study, six different algorithms are run for the hyper-
parameters of the deep neural network created for COVID-
19 detection. The aim is to find the most suitable architecture 
for the deep neural network. Hyper-parameter optimization 
is applied with these three algorithms. The number of objec-
tive functions is three. These are multi-class cross entropy, 
error ratio, and the number of parameters.

First, SGA is run. As a result of SGA, 8 Pareto front 
solutions are obtained. The distribution of the solutions 
obtained as a result of SGA is shown in Fig. 10. When 
the graph is analyzed, the multiclass cross entropy and 
error rate show similar characteristics. these values 
increase and decrease approximately in parallel. But they 
are inversely proportional to the number of parameters. 
Moreover, the results are not very close, they are scat-
tered. Looking at the graph of the number of parameters 
and error ratio, there are different structures that find an 
error ratio of 0.

The NSGA-III algorithm is run. A total of 14 solu-
tions are obtained. Figure 11 shows that multi-class cross 
entropy and error ratio are directly proportional, and the 
number of parameters is inversely proportional to oth-
ers. Within these results, many different models with an 

accuracy =
true positive + true negative

true positive + true negative+

false positive + false negative

 (4)

error ratio = 1− accuracy  (5)

Multiclass cross entropy = −
∑

K
k y

k logŷk  (6)

The selection of performance indicators plays a crucial role 
in evaluating the effectiveness and efficiency of predictive 
models. In this study, three key performance indicators were 
chosen: error ratio (1-accuracy), multi-class cross entropy, 
and the number of parameters of the model. The error ratio, 
calculated as 1 minus the accuracy, provides a complemen-
tary perspective to accuracy by quantifying the proportion 
of incorrect predictions. By considering both correct and 
incorrect predictions, the error ratio offers a more compre-
hensive understanding of the model’s predictive capabili-
ties, particularly in scenarios where misclassification carries 
significant consequences. Additionally, the multi-class cross 
entropy metric measures the model’s predictive uncertainty 
by assessing the divergence between predicted and actual 
probability distributions across multiple classes. This met-
ric is particularly relevant in multi-class classification tasks, 
providing insights into the model’s confidence levels and 
potential areas for improvement. Lastly, the number of 
parameters of the model serves as a measure of model com-
plexity and resource utilization. By monitoring the number 
of parameters, researchers can assess the trade-off between 
model complexity and performance, ensuring that the model 
achieves an optimal balance between predictive accuracy 
and computational efficiency. Overall, the selection of these 
performance indicators reflects a comprehensive evaluation 
framework aimed at capturing different aspects of model 
performance and guiding model optimization efforts.

4.2.2 Deep CNN

The deep CNN is created in Fig. 9. It has input with a size 
150 × 150 × 3. It has three convolutional and max-pooling 
layers respectively. Also, it has fully connected neural 
networks with a dropout layer. Finally, it has three output 

Table 2 Parameter alternatives
Parameter Alternatives
Number of filters 4, 8, 16, 32, 64, 128
Shape of filters (1,1), (2,2), (3,3), (4,4), (6,6), (5,5), (7,7), (8,8)
Training algorithm Adagrad, Adam, Adamax, RMSprop, SGD
Learning rate 0.01, 0.001, 0.0001, 0.00001, 0.000001
Size of dense layer 4, 8, 16, 32, 64, 128
Dropout rate 0.3, 0.4, 0.5, 0.6, 0.7

Fig. 9 Deep CNN architecture
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are proportional. When these two objective functions are 
compared with the number of parameters, it is seen that 
there is an inverse proportion. It has a high total number 
of solutions. It has discovered models with very small 
dimensions, but these models have a high error rate. The 
solutions are very close to each other. It gave very similar 
solutions to the Pareto front.

When the R-NSGA-II algorithm is run, a total of 3 
solutions are obtained. It can be seen in Fig. 13. In this 
result, it is seen that multi-class cross entropy and error 
ratio are directly proportional. When these two objective 
functions are compared with the number of parameters, 
it is seen that there is an inverse proportion. It is an inef-
ficient algorithm as it gives only 3 solutions.

When the SMS-EMOA algorithm is run, a total of 8 
solutions are obtained. It can be seen in Fig. 14. In this 
result, it is seen that multi-class cross entropy and error 
ratio are directly proportional. When these two objective 
functions are compared with the number of parameters, 
it is seen that there is an inverse proportion. In general, 
the solutions are well distributed. As the model complex-
ity decreased (less number of parameters) the error rate 
increased.

When the MOEA/D algorithm is run, a total of 2 solu-
tions is obtained. It can be seen in Fig. 15. In this result. 
There is a similar result here, but it is not very clear as 
there are only 2 solutions.

Figure 16 shows the comparison of the algorithms on the 
Pareto front. Blue color represents SGA, red color NSGA-
II, green color NSGA-II, yellow color R-NSGA-II, purple 

error rate of 0 are discovered. They are included in the 
Pareto front with differences in multi-class cross entropy 
values. Since it gives 14 different solutions, a large num-
ber of points can be observed. It is especially unsuccess-
ful in discovering small-size models (smaller number of 
parameters) compared to SGA.

When the NSGA-II algorithm is run, a total of 16 solu-
tions are obtained. It can be seen in Fig. 12. In this result, 
it is seen that multi-class cross entropy and error ratio 

Fig. 12 Pareto front of NSGA-II

 

Fig. 11 Pareto front of NSGA-III

 

Fig. 10 Pareto front of SGA
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number of parameters and multi-class cross entropy, there is 
a blue dot close to 0. The SGA algorithm achieved a good 
point with low parameters.

Three-dimensional Pareto fronts are shown in Fig. 17. f1 
is multi-class cross entropy, f2 is error ratio, and f3 is the 
number of parameters. When the figure is examined, there 
are too many points to make an easy conclusion. but some 
points stand out. it can be observed that the colors yellow 
and green give more unsuccessful results. The yellow and 
green points are R-NSGA-II and NSGA-II algorithms.

4.3.1 Hypervolume results

The hypervolume is a widely used performance metric in 
multi-objective optimization that quantifies the quality of 
a Pareto front, representing the trade-offs between con-
flicting objectives. It measures the volume of the objec-
tive space that is dominated by the solutions in the Pareto 
front. A larger hypervolume indicates a more desirable 
Pareto front, with solutions that are both diverse and well-
distributed across the objective space. The hypervolume 
serves as a crucial indicator of the effectiveness of different 
optimization algorithms. By comparing the hypervolumes 
generated by various algorithms, it can be accessed their 
ability to produce diverse and high-quality solutions that 
balance the trade-offs between multi-class cross entropy, 
error ratio, and the complexity of the convolutional neural 
network architecture. Ultimately, the hypervolume analysis 
provides valuable insights into the performance of different 
optimization techniques, guiding the selection of the most 

color SMS-EMOA, and black color MOEA/D algorithms. 
When the graph is analyzed, it is seen that there are two 
algorithms that almost approach 0 in error rate and multi-
class cross entropy values. These are SGA and SMS-EMOA 
algorithms. In addition, there are many points with higher 
error ratios and multi-class cross entropy values. It can be 
seen that these two algorithms have achieved good results 
with complex models with high parameters. They found the 
endpoints well within the Pareto front. In the graph of the 

Fig. 15 Pareto front of MOEA/D

 

Fig. 14 Pareto front of SMS-EMOA

 

Fig. 13 Pareto front of R-NSGA-II
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demonstrate that the SGA attained the highest hypervolume 
score of 905.759, indicating its effectiveness in exploring 
the solution space and identifying diverse sets of Pareto-
optimal solutions. Following closely, NSGA-III achieved 
a hypervolume of 835.602, showcasing its robustness in 
balancing convergence and diversity in the Pareto front. 
NSGA-II and SMS-EMOA also performed competitively, 
with hypervolume scores of 709.799 and 743.132, respec-
tively. However, R-NSGA-II and MOEA/D exhibited rela-
tively lower hypervolume scores of 633.317 and 520.339, 
suggesting potential limitations in their ability to explore 
the solution space comprehensively. Overall, the hypervol-
ume comparison provides valuable insights into the relative 
performance of different algorithms and aids in selecting the 
most suitable approach for multi-objective hyperparameter 
optimization tasks. Considering all these results, SGA can 
be considered the best.

4.4 Sensitivity analysis for multi-class cross entropy

A sensitivity analysis is conducted to explore the relation-
ship between the number of parameters and the multi-
class cross entropy in our model for COVID-19 detection 
from X-ray images. The sensitivity analysis is aimed at 

suitable algorithm for achieving optimal results in COVID-
19 detection.

Table 3 shows the hypervolume comparison of the algo-
rithms. The hypervolume metric serves as an indicator of the 
quality of Pareto fronts generated by each algorithm, with 
higher values representing better performance. The results 

Table 3 Hypervolume comparison of the algorithms
Algorithm Hypervolume
SGA 905.759
NSGA-III 835.602
NSGA-II 709.799
R-NSGA-II 633.317
SMS-EMOA 743.132
MOEA/D 520.339

Fig. 17 3-dimensional pareto front

 

Fig. 16 Pareto front comparisons of the algorithms
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rate performance of the model. By employing Shapley 
values, a game-theoretic technique for assigning impor-
tance scores to individual features, the influence of each 
parameter on the error rate metric is examined. Through 
systematic adjustments to the number of parameters and 
subsequent observations of the corresponding changes 
in the error rate, a comprehensive understanding of our 
model’s sensitivity to architectural configurations is 
aimed to be gained. This analysis serves to provide valu-
able insights for optimizing the CNN architecture to miti-
gate error rates and enhance the accuracy of COVID-19 
detection from X-ray images, thereby bolstering the reli-
ability of our diagnostic system.

Figure 19 shows a beeswarm graph of the error ratio 
and the number of parameters of the CNN model. The data 
points depicted in the graph are denoted by blue for low 
values and red for high values. Simply put, the CNN models 
denoted by the blue points contain fewer amount of model 
parameters. The efficiency of the model improves as the 
error ratio value diminishes with increasing simplicity. The 
most intricate models are also the most successful. How-
ever, upon closer inspection, purple specks are also visible. 
This indicates that high success can be obtained with mod-
els that are comparatively less complex.

5 Conclusion

In conclusion, this research paper introduces a novel 
approach for hyperparameter optimization in the context 
of COVID-19 detection from X-ray images using CNNs. 
With the emergence of the COVID-19 pandemic, there is a 
pressing need for accurate and efficient diagnostic tools, and 
X-ray imaging has shown promise in this regard.

elucidating how variations in the number of parameters of 
the deep CNN architecture impact the performance of the 
model in terms of multi-class cross entropy. Through the 
application of Shapley values, a game-theoretic approach 
to assigning importance scores to each feature, the influ-
ence of individual parameters on the multi-class cross 
entropy metric is examined. By systematically varying 
the number of parameters and observing the correspond-
ing changes in multi-class cross entropy, insights into the 
sensitivity of our model to architectural configurations 
are gained. This analysis provides valuable guidance for 
optimizing the CNN architecture to achieve better per-
formance in COVID-19 detection from X-ray images, 
ultimately enhancing the accuracy and reliability of our 
diagnostic system.

Figure 18 shows a beeswarm graph of multi-class cross 
entropy and the number of parameters of the CNN model. 
Looking at the graph, the points in blue indicate low values 
and the points in red indicate high values. In other words, 
the blue-colored points are simpler CNN models with fewer 
model parameters. As the model becomes simpler, the multi-
class cross entropy value decreases and the model becomes 
more successful. The most successful models are the most 
complex models.

4.5 Sensitivity analysis for error rate

A sensitivity analysis is undertaken to explore the impact 
of variations in the number of parameters on the error 
rate (1-accuracy) metric in our model for COVID-19 
detection from X-ray images. The primary objective 
of this sensitivity analysis is to elucidate how changes 
in the number of parameters of the deep convolutional 
neural network (CNN) architecture influence the error 

Fig. 19 Beeswarm graph of error 
rate and number of parameters of 
the CNN model

 

Fig. 18 Beeswarm graph of 
multi-class cross entropy and 
number of parameters of the 
CNN model
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In this study, six different algorithms are evaluated 
for multi-objective hyperparameter optimization. Future 
research could explore the integration of other optimization 
algorithms or hybrid approaches to enhance the diversity 
and effectiveness of the optimization process. Investigat-
ing novel algorithms or adapting existing ones to the spe-
cific requirements of COVID-19 detection tasks could yield 
promising results.

While this study focuses on X-ray images for COVID-
19 detection, future research could extend the proposed 
approach to other imaging modalities, such as computed 
tomography (CT) scans or magnetic resonance imaging 
(MRI). Comparing the performance of hyperparameter 
optimization techniques across different imaging modalities 
could provide valuable insights into their generalizability 
and applicability in diverse clinical settings.

Transfer learning techniques have shown promise in 
leveraging pre-trained CNN models for tasks with limited 
labeled data, such as COVID-19 detection. Future research 
could explore the integration of transfer learning and domain 
adaptation methods into the hyperparameter optimization 
framework to further improve model performance and 
adaptability to different datasets and imaging conditions.

While this study utilizes publicly available datasets 
for experimentation, future research could conduct exten-
sive evaluations on real-world clinical data collected from 
diverse healthcare settings. Assessing the performance of 
hyperparameter optimization techniques under real-world 
conditions, including variations in patient demographics, 
imaging protocols, and equipment characteristics, is essen-
tial for validating their effectiveness and robustness in clini-
cal practice.

As deep learning models are increasingly deployed in 
clinical settings, the interpretability and explainability of 
model predictions become crucial. Future research could 
focus on developing interpretable models and evaluation 
metrics to enhance the trust and transparency of CNN-based 
diagnostic systems. Exploring techniques for visualizing 
and understanding the decision-making process of opti-
mized CNN models could facilitate their acceptance and 
adoption by healthcare professionals.
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The study frames the problem as a MOO task, consider-
ing objective functions such as multi-class cross entropy, 
error ratio, and complexity of the CNN network. To iden-
tify the best solutions to these objectives, six different algo-
rithms are employed: NSGA-III, NSGA-II, R-NSGA-II, 
SMS-EMOA, MOEA/D, and the proposed Swarm Genetic 
Algorithms (SGA). The results reveal that SGA outperforms 
the other algorithms in terms of generating Pareto optimal 
solution sets and achieving higher hypervolume values.

The findings suggest that SGA offers superior perfor-
mance compared to existing algorithms for multi-objective 
hyperparameter optimization in the context of COVID-19 
detection from X-ray images. Moreover, a sensitivity anal-
ysis is conducted to investigate the impact of varying the 
number of parameters of the CNN on model success, pro-
viding valuable insights into the robustness and generaliz-
ability of the proposed approach.

In summary, this research contributes to the ongoing 
efforts to develop efficient and accurate diagnostic tools 
for COVID-19 using deep learning techniques. The find-
ings highlight the importance of hyperparameter optimi-
zation in enhancing the performance of CNN models for 
disease detection and pave the way for future research in 
this domain.

The limitations of the proposed approach in comparison 
to similar schemes warrant careful consideration. While 
this algorithm demonstrates superior performance in gen-
erating Pareto optimal solution sets compared to exist-
ing algorithms, such as NSGA-III, NSGA-II, R-NSGA-II, 
SMS-EMOA, and MOEA/D, there are certain constraints to 
be acknowledged. One limitation lies in the computational 
complexity associated with multi-objective hyperparameter 
optimization, particularly when dealing with large-scale 
datasets or complex CNN architectures. Additionally, the 
generalizability of this approach across diverse imaging 
modalities or clinical settings may be subject to further 
investigation. The sensitivity of the algorithm to variations 
in dataset characteristics, such as image quality or class dis-
tribution imbalance, should be carefully assessed. Address-
ing these limitations and refining this approach through 
ongoing research efforts will be crucial for ensuring its 
effectiveness and applicability in real-world scenarios.

Future studies in this domain can explore several avenues 
to further advance the research on hyperparameter optimi-
zation for COVID-19 detection from X-ray images using 
CNNs. While this study considers objective functions such 
as multi-class cross entropy, error ratio, and complexity of 
the CNN network, future research could investigate the effi-
cacy of additional objective functions. Exploring alternative 
metrics may provide insights into different aspects of model 
performance and lead to further improvements in hyperpa-
rameter optimization.
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