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A B S T R A C T   

This review paper addresses the critical need for advanced rice disease detection methods by 
integrating artificial intelligence, specifically convolutional neural networks (CNNs). Rice, being 
a staple food for a large part of the global population, is susceptible to various diseases that 
threaten food security and agricultural sustainability. This research is significant as it leverages 
technological advancements to tackle these challenges effectively. Drawing upon diverse datasets 
collected across regions including India, Bangladesh, Türkiye, China, and Pakistan, this paper 
offers a comprehensive analysis of global research efforts in rice disease detection using CNNs. 
While some rice diseases are universally prevalent, many vary significantly by growing region due 
to differences in climate, soil conditions, and agricultural practices. The primary objective is to 
explore the application of AI, particularly CNNs, for precise and early identification of rice dis-
eases. The literature review includes a detailed examination of data sources, datasets, and pre-
processing strategies, shedding light on the geographic distribution of data collection and the 
profiles of contributing researchers. Additionally, the review synthesizes information on various 
algorithms and models employed in rice disease detection, highlighting their effectiveness in 
addressing diverse data complexities. The paper thoroughly evaluates hyperparameter optimi-
zation techniques and their impact on model performance, emphasizing the importance of fine- 
tuning for optimal results. Performance metrics such as accuracy, precision, recall, and F1 
score are rigorously analyzed to assess model effectiveness. Furthermore, the discussion section 
critically examines challenges associated with current methodologies, identifies opportunities for 
improvement, and outlines future research directions at the intersection of machine learning and 
rice disease detection. This comprehensive review, analyzing a total of 121 papers, underscores 
the significance of ongoing interdisciplinary research to meet evolving agricultural technology 
needs and enhance global food security.   

1. Introduction 

Plants play a vital and multifaceted role in maintaining the health and equilibrium of the planet’s ecosystems, proving indis-
pensable for life on Earth. Their significance extends across various ecological, environmental, and societal dimensions. Notably, 
plants are the primary contributors to the Earth’s oxygen supply, absorbing carbon dioxide through photosynthesis and releasing vital 
oxygen essential for the respiration of diverse organisms, including humans. Acting as carbon sinks, plants contribute to climate 
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regulation by absorbing and storing carbon dioxide, mitigating the impact of greenhouse gases and climate change. Additionally, 
plants foster biodiversity by providing habitats and sustenance for a diverse array of organisms, forming the foundational support for 
various ecosystems. From serving as a crucial source of food, including staples like rice, wheat, fruits, and vegetables, to offering 
medicinal resources and supporting soil stabilization, plants play a pivotal role in human survival and well-being. Their influence 
extends to regulating the water cycle, enhancing landscapes aesthetically, and contributing significantly to the global economy 
through industries such as forestry, horticulture, and agriculture. Moreover, plants impact climate regulation by influencing tem-
perature and humidity through processes like transpiration. The integral role of plants in the planet’s ecological balance underscores 
their significance in environmental sustainability and emphasizes the need for conservation and responsible stewardship of these 
invaluable resources [1–4]. 

Rice holds paramount importance globally, making significant contributions to human nutrition, food security, and economic 
sustainability. Serving as a dietary staple for over half of the world’s population, particularly in Asia, rice plays a crucial role in 
providing essential calories and nutrition, serving as a primary energy source for billions. Its high caloric efficiency is pivotal, in 
meeting the energy needs of large populations. Beyond being a major source of carbohydrates, rice contains vital nutrients, with brown 
rice retaining more due to minimal processing. Its versatility in culinary traditions worldwide, serving as a base for various dishes, 
contributes to diverse and culturally rich diets. Additionally, rice holds cultural significance, embedded in practices, traditions, and 
rituals, symbolizing life, fertility, and prosperity. The economic livelihoods of millions depend on rice cultivation, supporting inter-
national trade and contributing significantly to economies. As a staple crop, rice substantially contributes to global food security, 
addressing hunger and ensuring a stable food supply. Adaptability to diverse agroclimatic conditions and the preservation of tradi-
tional rice varieties contribute to agricultural biodiversity. The rice industry’s impact on global trade and economies, both on small and 
large scales, underscores its pivotal role in international commerce. Beyond its role as a major food source, rice’s cultural significance, 
economic impact, and contributions to global food security emphasize its versatility, nutritional value, and adaptability in sustaining 
human life and well-being [5–8]. 

Rice is one of the most vital crops globally, serving as a staple food for over half of the world’s population. Cultivated in diverse 
regions, rice plays a crucial role in ensuring food security and livelihoods for millions of people, particularly in Asia, where the majority 
of rice is grown and consumed. According to the Food and Agriculture Organization (FAO) of the United Nations, global rice pro-
duction reached approximately 500 million metric tons in 2020, with Asia accounting for about 90 % of the total output [9]. China and 
India are the top rice-producing countries, with China leading at 149.0 million metric tons and India following closely at 118.0 million 
metric tons [10]. Additionally, Indonesia, Bangladesh, and Pakistan are among the largest rice-producing countries in Asia [11]. Rice is 
a crucial staple food for over half of the world’s population, providing 60–70 % of caloric intake [12]. The demand for rice is 
continuously increasing, especially in regions like Asia and sub-Saharan Africa, where populations living in poverty heavily rely on rice 
as a primary food source [13]. 

Rice diseases assume critical importance due to their far-reaching consequences on global food security, economic sustainability, 
and the livelihoods of millions. The significance of addressing and comprehending rice diseases is underscored by several key factors. 
Firstly, as a staple food for over half of the world’s population, particularly in Asia, diseases impacting rice crops directly jeopardize the 
food supply, affecting the availability of a vital dietary component for billions. Secondly, rice cultivation is a major economic activity 
supporting the livelihoods of millions of farmers, and diseases can result in substantial economic losses, affecting both small-scale and 
large-scale rice production and trade. This financial impact can be devastating for farmers and communities reliant on rice agriculture. 
Additionally, given the significant role of rice in international trade, outbreaks of diseases can disrupt global trade, influencing 
economies and trade balances. Addressing and preventing the spread of rice diseases is imperative for maintaining stable international 
commerce. Certain rice diseases can also contribute to environmental degradation, affecting soil health and ecosystem balance, 
making their mitigation crucial for sustainable agriculture. Moreover, the study of rice diseases stimulates research and innovation in 
agricultural science, driving advancements in crop protection and sustainable agriculture. Smallholder farmers, constituting a sub-
stantial portion of the global agricultural workforce, are particularly vulnerable to the effects of rice diseases, necessitating focused 
efforts for their resilience and economic well-being. Rice diseases can impact the quality and safety of rice grains, posing risks such as 
reduced nutritional value, contamination, or the presence of harmful substances. Ensuring the health of rice crops is vital for main-
taining the quality and safety of the food supply. The collaborative and international nature of research on rice diseases further 
emphasizes the need for shared efforts in developing effective strategies and sharing best practices. Addressing rice diseases is 
imperative due to their direct influence on food supply, economic stability, global trade, environmental sustainability, and the welfare 
of farmers and communities. Effectively tackling these challenges demands a multidisciplinary approach, integrating scientific 
research, innovative agricultural practices, and international collaboration to ensure the resilience and sustainability of rice culti-
vation on a global scale [14–16]. 

The global rice industry is characterized by a diverse landscape of production, trade, and economic significance. The most 
prominent rice-producing countries, often referred to as the “rice bowl” nations, include China and India, which collectively account 
for a substantial portion of the world’s rice output. Other major rice producers include countries in Southeast Asia, such as Indonesia, 
Bangladesh, and Vietnam. In terms of rice trade, there are notable disparities between the largest exporting and importing nations. 
Typically, countries like India, Thailand, and Vietnam are among the leading rice exporters, while key importers often include nations 
in Africa, the Middle East, and parts of Asia. The economic importance of rice is multifaceted. It plays a central role in the economies of 
many nations, particularly in Asia, where rice cultivation supports the livelihoods of millions of farmers. Moreover, the rice industry 
contributes significantly to international trade, impacting global economies and trade balances. The economic importance extends 
beyond agriculture, influencing food security, employment, and various related industries. Thus, understanding the dynamics of rice 
production, trade, and their economic implications is crucial for shaping agricultural policies and ensuring the stability of economies 
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worldwide [17–20]. 
Today, artificial intelligence (AI) has a wide variety of different application areas [21–29]. The integration of AI into agriculture has 

opened up new avenues for improving crop management, and one notable application is in the detection of rice diseases. AI, 
particularly machine learning algorithms, has demonstrated effectiveness in analyzing large datasets of images to identify patterns 
associated with various diseases. In the case of rice disease detection, AI technologies, such as computer vision and deep learning, offer 
a promising solution. CNNs are a subset of deep learning algorithms designed for image recognition tasks. They are particularly adept 
at capturing intricate patterns and features within images, making them well-suited for detecting visual symptoms associated with rice 
diseases. CNNs excel in discerning complex structures within images, enabling accurate and efficient identification of disease-related 
patterns. Their usage in rice disease detection involves training the network on diverse datasets containing images of healthy and 
diseased rice plants. Once trained, the CNN can analyze new images, providing rapid and reliable identification of potential diseases. 
This AI-driven approach not only enhances the speed and accuracy of detection but also contributes to more proactive and targeted 
disease management strategies in rice cultivation. In addition to CNNs, there are some alternative algorithms such as Support vector 
machines, decision trees, random forests, and regression models but they are less effective than CNNs [7,30,31]. 

This paper stands out among literature review papers in the field of AI-enabled rice disease detection by offering a comprehensive 
analysis of datasets from diverse regions worldwide, synthesizing insights from over 121 papers to provide a nuanced understanding of 
the geographic distribution of data collection. It goes beyond superficial descriptions of methodologies, delving deeply into data 
preprocessing strategies, algorithmic models, and performance evaluation metrics. By identifying challenges and proposing oppor-
tunities for improvement, it provides valuable insights for future research directions, emphasizing interdisciplinary collaboration and 
the development of robust AI algorithms. Additionally, this paper adopts a forward-looking perspective, outlining emerging trends and 
future research directions in the field. It highlights the global participation of researchers, underscoring the importance of interna-
tional collaboration, and meticulously examines data sources and preprocessing strategies to provide a deeper understanding of 
research outcomes and methodologies. Overall, its comprehensive analysis, in-depth methodological examination, forward-looking 
perspective, emphasis on global participation, and meticulous examination of data sources and preprocessing strategies contribute 
to its novelty and innovation compared to other literature review papers in the field [32–35]. 

2. Literature review 

2.1. Rice diseases 

Rice is vulnerable to a range of diseases caused by fungi, bacteria, viruses, and other pathogens, posing significant challenges to 
global rice production. Among the prevalent rice diseases is the devastating Blast Disease, impacting all above-ground parts of the 
plant with lesions on leaves, stems, and grains, resulting in substantial yield losses. Sheath Blight caused by a fungus affects leaves and 
sheaths, leading to lesions and rot, thereby diminishing grain quality and yield. Bacterial Leaf Blight induces water-soaked lesions and 
blighting, causing substantial yield losses. Brown Spot and Rice Blast are fungal diseases impacting leaves, panicles, and nodes, 
affecting grain development. Other diseases include the Rice Yellow Mottle Virus, Rice Grassy Stunt, Rice Ragged Stunt, Bacterial 
Streak, and the Rice Water Weevil. Disease management strategies incorporate resistant crop varieties, cultural practices, and inno-
vative technologies like artificial intelligence for early detection and proactive control. This multifaceted approach is crucial for 
safeguarding global rice production against the threats posed by diverse pathogens and pests [36]. 

Some rice diseases are not universal, as they vary by growing region. Some rice diseases are universal. For instance, sheath rot is a 
widespread disease affecting rice crops globally [37]. Rice blast disease, caused by Magnaporthe oryzae, is a major challenge 
worldwide [38]. Bakanae disease caused by Fusarium fujikuroi is observed in most rice-growing regions [39]. Different regions face 
distinct diseases; for example, in western Uttar Pradesh, India, Bakanae disease is caused by Fusarium moniliforme [40]. Therefore, 
while rice diseases like sheath rot and blast disease are prevalent worldwide, the specific types and prevalence of diseases vary by 
region due to factors such as climate, soil conditions, and agricultural practices. 

Active ingredients play a pivotal role in both crop protection and enhancement. For example, a study on pesticide residues in 
organic rice production in Vietnam identified active ingredients like azoxystrobin, propiconazole, and tebuconazole [41]. A study 
focusing on rice sheath blight control introduced a dual-functionalized pesticide nanocapsule delivery system that contained vali-
damycin and thifluzamide as active ingredients [42]. Rice byproducts have been found to contain health-promoting properties due to 
the presence of bioactive molecules such as vitamins, minerals, fiber, and phenolic compounds, making them potential ingredients for 
fortified foods and supplements [43]. The use of active ingredients extends beyond crop protection to include nutritional and me-
dicinal applications. For instance, pigmented rice varieties are rich in antioxidant and physiologically active ingredients compared to 
white rice, making them valuable for nutraceutical purposes [44]. Rice bran, a by-product of rice processing, contains bioactive in-
gredients like magnesium, potassium, phosphorus, and B vitamins, which play a role in regulating physiological functions [45]. Red 
yeast rice ingredients such as monacolin K (lovastatin) and GABA are known for their health benefits in reducing the risk of circulatory 
diseases [46]. The availability of active ingredients to rice farmers in various countries is extensive and encompasses a wide array of 
compounds used for crop protection, nutritional enhancement, and medicinal purposes [47]. 

The main pathogen threatening the rice crop is Magnaporthe oryzae, which is the causal agent of blast disease. This invasive fungus 
can infect different parts of rice plants, leading to leaf blast, stem blast, panicle blast, and grain blast. The devastating impact of this 
pathogen on rice production underscores the significant losses incurred annually due to its destructive nature [48,49]. 

Rice resistance breeding has emerged as a crucial strategy in managing rice diseases and enhancing crop resilience in major rice- 
producing countries. For instance, in China, extensive research and breeding programs have focused on developing varieties resistant 
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to bacterial blight, blast, and sheath blight through the incorporation of resistance genes such as Xa21, Pi9, and qSB-9 (TQ) [50,51]. 
India has made significant strides by leveraging marker-assisted selection (MAS) to introgress multiple disease resistance genes into 
popular high-yielding varieties [52,53]. In Bangladesh, the International Rice Research Institute (IRRI) has collaborated with local 
institutions to release several disease-resistant rice varieties, such as BRRI dhan varieties, tailored to the specific biotic stresses in the 
region [54]. Similarly, research in the Philippines has led to the development of high-yielding, disease-resistant varieties through both 
conventional breeding and biotechnological approaches, including gene editing techniques like CRISPR/Cas9 [55]. The development 
of resistant rice varieties in these countries not only mitigates the impact of diseases but also reduces the dependency on chemical 
pesticides, contributing to sustainable agricultural practices [56]. This focus on resistance breeding underscores the critical role of 
genetic research and innovation in ensuring food security and agricultural sustainability in regions heavily reliant on rice cultivation. 

It is vital to pursue minimal errors in order to ensure the reliable detection and management of diseases, with respect to acceptable 
error percentages. Although the acceptable percentage of error may differ based on the specific application and the tolerance levels of 
stakeholders. It can be said that if the output variables are not too many, normal error rates should be less than 5 %. If the output 
variables are too many and cover lots of diseases, the error rate can be 10%–15 %. Nevertheless, this threshold may be modified in 
accordance with the severity of the disease, economic implications, and practical feasibility. 

2.2. Dataset analysis 

Table 1 offers a detailed overview of the datasets utilized in diverse studies focused on rice disease detection and they are the 
suggested variables of the authors. These datasets, drawn from various papers, contribute significantly to the breadth and depth of the 
research landscape. Notably, the “Collected by the authors” category underscores the proactive efforts of researchers in assembling 
extensive datasets, each varying in terms of the number of images and classes represented. Examining specific papers reveals the 
strategic use of established datasets like PlantVillage and Kaggle Rice Disease, as seen in studies by Refs. [8,57], respectively, 
underlining the importance of leveraging well-established resources. The classification diversity, spanning from 2 to 10 classes, un-
derscores the nuanced and intricate nature of the various rice diseases studied. Researchers have thoughtfully incorporated datasets 
such as Kaggle Blast and Rust, UCI Rice Leaf Disease, and Mendeley Rice Data, showcasing a judicious mix of widely recognized 
platforms and datasets crafted by researchers to cater to specific research objectives. This table serves as a valuable resource for 

Table 1 
Variable characteristics of datasets.  

Paper Dataset Number of images Number of classes 

[57] PlantVillage 2011 2 
[8] Kaggle Rice Disease 1648 3 
[58] UCI Rice Leaf Disease 2700 3 
[59] Collected by the authors 12000 3 
[60] PlantVillage 8000 2 
[61] Kaggle Rice Disease 12229 4 
[62] Kaggle Blast and Rust 3000 2 
[63] Kaggle Rice Leaf Image 4000 3 
[64] Collected by the authors 2500 5 
[65] PlantVillage 90000 6 
[30] Rice Leaf Disease Dataset 900 9 
[66] Kaggle and UCI datasets 3696 3 
[67] Rice Disease Dataset 500 4 
[68] Kaggle Rice Leaf Disease 10000 4 
[31] Collected by the authors 10083 5 
[69] Collected by the authors 5932 3 
[70] Collected by the authors 5932 4 
[71] Collected by the authors 5932 4 
[72] PlantVillage 4955 4 
[73] Collected by the authors 8911 5 
[74] Kaggle Rice Disease 3355 4 
[75] Mendeley Rice Data 5932 4 
[76] Collected by the authors 1000 2 
[19] Collected by the authors 15210 10 
[77] Collected by the authors 626 4 
[78] Rice Disease Dataset 400 4 
[79] Kaggle Rice Nutrient Deficiency 1156 3 
[80] Collected by the authors 5932 9 
[81] Collected by the authors 7332 4 
[82] Kaggle Rice Disease 1579 3 
[83] PlantVillage 120 3 
[84] Collected by the authors 3416 4 
[85] Mendeley Rice Data 6032 4 
[86] Kaggle Rice Disease 1008 4 
[3] Rice Blast Dataset 2000 2 
[87] Kaggle Rice Disease 1732 3  
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researchers, offering insights into the dataset characteristics, enabling meaningful comparisons, and supporting a deeper under-
standing of the data landscape in rice disease detection studies. 

2.3. Data preprocessing strategies 

Table 2 meticulously details the diverse preprocessing strategies employed by researchers in the domain of rice disease detection 
using CNNs. Each entry showcases the thoughtful considerations and techniques applied to enhance the quality and relevance of the 
datasets before feeding them into the models. Strategies range from basic adjustments, such as size cutting and angle changes [88] and 

Table 2 
Preprocessing strategies.  

Paper Preprocessing 

[88] Size cutting, angle change, vertical symmetrical mirror image processing 
[8] Adjusting contrast, brightness, and color of the images, applying gaussian filtering to remove noise, normalization 
[1] Random rotation, random noise injection, flipping, resizing, foreground extraction 
[58] Thresholding and clustering, color transforming model 
[94] Affine transformations, variation in brightness and contrast, resizing, random crop, jitter, cutout 
[95] Image rescale, image resize 
[89] PCA 
[96] Dct, padding 
[97] Hyperspectral image correction using, selection of region of interest, calculation of spectral reflectance 
[98] Leaf recognition, rotation, scaling, shifting, shearing, flipping 
[99] Rescaling, rotation, image compression, color adjustment, ratio adjustment 
[62] Resizing, normalization, noise reduction 
[100] Flipping, rotating, noise addition, zooming, background removal, pca, cars, spa 
[100] PCA, competitive adaptive reweighted sampling (cars), successive projections algorithm (spa) 
[63] Resizing, background removal, cropping 
[91] GAN 
[66] Image acquisition, image quality check 
[93] Noise removal using Hybrid Gaussian-Weiner (HGW) filter 
[101] One-hot encoding, non-sequenced nucleotide representation 
[68] Rescaling 
[102] Picture cropping, smoothing 
[103] Flipping, cropping, and resizing images 
[104] StyleGAN2-ADA, the variance of the Laplacian filter to discard blurry and poorly generated images 
[105] Converted to HSV color space, Rotating, adjusting width and height, scaling, flipping 
[31] Progressive re-sizing 
[90] Dual-tree complex wavelet transform (DTCWT), PCA, Discrete cosine transform (DCT) 
[106] Background removal, image cropping, and resizing 
[107] Median Filter (MF) 
[108] Cropping, zooming, contrast variation 
[109] Histogram equalization, flipping, skewing, rotation, zoom, shear transformation, noise addition, distortion 
[69] Fuzzy image processing for color to grayscale conversion, FC-CLAHE technique for fuzzy logic contrast enhancement 
[70] Rotations and flipping 
[74] Affine transformation, perspective transformation 
[75] Rotating, shifting, enlarging, flipping, resizing 
[110] Median filtering 
[111] Random rotation, distortion, shear transformation, vertical flip, horizontal flip, skewing, intensity transformation 
[112] Random rotation, horizontal flip, vertical flip, resizing 
[19] Image rescaling, image resizing, rotation, flipping, shearing, random zooming 
[113] Cropping 
[114] SAM-GAN for data augmentation, GAN for data enhancement 
[115] Histogram equalization 
[116] Flip, rotate, randomly cut, random gray scale transformation and random horizontal flip applied 
[78] Otsus thresholding, horizontal alignment, image resizing 
[79] Zoom, rotation, width shift, height shift, horizontal and vertical flips 
[80] Data cleaning, label validation, balancing classes, reshaping images 
[117] CLAHE (Contrast Limited Adaptive Histogram Equalization), image resizing, pixel scaling, zero-to-one scaling 
[82] Otsu segmentation algorithm, blue channel segmentation, median filter, image size reduction 
[118] Normalization, rotation, deblurring, resizing 
[83] Histogram equalization, Image resizing, Image segmentation 
[84] DMD-based attention-driven pre-processing, Image enhancement, Segmentation, DMD for dynamical systems 
[119] Contrast enhancement technique 
[20] Zooming, flipping, brightness adjustment, distortion 
[92] Progressive training, PWGAN-GP method, TIDA method, Test set imbalance adjustment 
[120] Data cleaning, image segmentation 
[121] Image resizing, wiener filter, CLAHE 
[86] Color and brightness adjustment, horizontal and vertical flipping 
[122] Zoom, flip, rotation, shear, cropping 
[87] Image rotation, flips  
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contrast, brightness, and color adjustments [8], to more advanced techniques like principal component analysis (PCA) [89] and 
dual-tree complex wavelet transform (DTCWT) [90]. Notable is the variety of approaches employed for image enhancement, including 
the use of Generative Adversarial Networks (GANs) [91], Progressive training, PWGAN-GP method, TIDA method, and Test set 
imbalance adjustment [92], and the application of Hybrid Gaussian-Weiner (HGW) filters for noise removal [93]. Furthermore, some 
studies incorporate segmentation techniques, such as Otsu segmentation algorithm [82] and Blue channel segmentation [80], to refine 
the dataset. The breadth of techniques employed illustrates the evolving nature of preprocessing methodologies, with researchers 
continuously innovating to ensure the robustness and effectiveness of CNN models in the challenging task of rice disease detection. 

2.4. Data collection zone 

Table 3 provides a comprehensive overview of the diverse geographic origins of data sources and collection zones in studies focused 
on rice disease detection using CNNs. The table showcases the global participation of researchers, contributing datasets from countries 
such as India, Bangladesh, Türkiye, China, and Pakistan. The data collection spans a multitude of cities and regions, highlighting the 
wide-ranging efforts to gather representative datasets. For instance, studies like [7,63] concentrate on data collected from India, while 
[1] specifically lists Kharagpur, Baragarh, and Puri as collection cities. Bangladesh is a significant contributor to this research domain, 
with studies like [17] focusing on Sylhet, and [30] collecting data from unspecified locations in Bangladesh. China also emerges 
prominently, with [105,123] conducting data collection in Qiqihar, Meiris district, Daqing, and Daqing, respectively. This diversity in 
data sources and zones is crucial for the development of robust CNN models, ensuring the models’ adaptability to different envi-
ronmental and agricultural conditions. It also underscores the collaborative and global nature of research in rice disease detection, 
emphasizing the need for a broad perspective to address the challenges and nuances associated with varied geographic and climatic 
conditions. 

2.5. Researcher addresses 

Table 4 sheds light on the distribution of research contributions in the field of rice disease detection using CNNs based on the 
countries of the researchers. China emerges as the leading contributor with 52 papers, showcasing a substantial and consistent 
commitment to advancing this area of research. Following closely is India, contributing significantly with 36 papers, underlining the 
substantial research activity in this country. Bangladesh, Saudi Arabia, and Egypt also make notable contributions, with 6, 4, and 3 
papers respectively. This distribution highlights the international collaboration and diverse expertise involved in the exploration of 
CNNs for rice disease detection. The dominance of China and India emphasizes the substantial research infrastructure and interest in 
these countries, likely driven by the significance of rice as a staple food and the need for advanced technologies to address agricultural 
challenges. The contributions from Saudi Arabia and Egypt underscore the global reach of research efforts in this domain, showcasing 

Table 3 
Data sources and zones.  

Paper Data collected country Data collected city 

[7] India  
[1] India Kharagpur, Baragarh, Puri 
[17] Bangladesh Sylhet 
[99] Türkiye Edirne 
[63] India  
[30] Bangladesh  
[123] China, India Qiqihar, Meiris district, Daqing 
[103] India  
[105] China Daqing 
[31] India Uttar Pradesh, Haryana, Assam 
[106] India  
[124] India  
[109] Bangladesh  
[69] India Kanuru 
[70] India  
[125] India  
[72] India  
[126] India  
[111] Bangladesh  
[76] Pakistan Kashmore 
[19] India Erode, Perundurai 
[113] China Chengdu 
[127] China Anhui province 
[116] China Erhe Township, Wuchang, Harbin 
[128] Asian countries  
[129] China Guangzhou 
[81] India Orissa, Imphal 
[130] China  
[131] China Nanjing  
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the collaborative nature of the scientific investigation into leveraging AI for crop disease detection. 

2.6. Used algorithms and models 

Table 5 provides a comprehensive overview of the diverse range of algorithms employed in recent studies focused on rice disease 
detection using CNNs. Researchers have strategically utilized various state-of-the-art architectures and methodologies to achieve high 
accuracy and robust performance in identifying and classifying rice diseases. Noteworthy algorithms include VGG, ResNet, YOLOv3, 
RestNETV2 101, YOLOv5, Inception-V3, DenseNet, AlexNet, GoogLeNet, Faster R–CNN, MobileNet, NasNet Mobile, SqueezeNet, 
SURF, HOG, K-nearest neighbors, Support vector machine, and many others. The algorithms are used commonly in the literature [132, 
133]. The performance metrics accompanying each algorithm, such as accuracy, precision, recall, F1-score, AUC, segmentation ac-
curacy, Dice coefficient, and Jaccard coefficient, showcase the effectiveness and reliability of these models. The utilization of diverse 
algorithms indicates the continuous exploration and refinement of models for enhancing the precision and robustness of rice disease 
detection systems. Researchers have not only focused on accuracy but also considered metrics like sensitivity, specificity, precision, 
and F1-score, showcasing a holistic evaluation of algorithmic performance. This diversity in algorithmic selection and performance 
evaluation highlights the multidimensional nature of the efforts to combat rice diseases through advanced machine learning 
techniques. 

2.7. Hyperparameter optimization techniques 

Table 6 provides a comprehensive overview of the myriad hyperparameter optimization techniques employed in recent studies 
focused on enhancing the performance of algorithms for rice disease detection. Researchers have explored a diverse range of meth-
odologies to fine-tune the critical parameters that govern the behavior of machine learning models. Noteworthy approaches include 
traditional methods such as Grid Search, Random Search, and Bayesian Optimization, as highlighted by Ref. [165]. [7] employ Particle 
Swarm Optimization (PSO), showcasing the utilization of nature-inspired algorithms for hyperparameter tuning [94]. studied Binary 
Optimization, Particle Swarm Optimization, and Squared Exponential Kernel, revealing a nuanced strategy for optimization. Other 
innovative techniques include Improved Backtracking Search Algorithm [95], Rider Henry Gas Solubility Optimization (RHGSO) [6], 
End-to-End Trainable Attention Module [100], and Weight Cooperative Self-Mapping Chaos Optimization Algorithm (WOACW) [166]. 
[93] introduce the Exhaustiveness and Brownian Motion-related Elephant Herding Optimization (EBM-EHO) algorithm, showcasing 
unconventional methodologies. The incorporation of Quantum-Inspired Moth Flame Optimizer [167] and Water Wave Optimization 
(WWO) [115] emphasizes the exploration of nature-inspired algorithms [69]. proposes the IAOF-CNN algorithm, a dedicated approach 
tailored for hyperparameter optimization in the context of rice disease detection. Collectively, this table illustrates the diversity in 
hyperparameter optimization strategies, showcasing the continual efforts to innovate and improve the efficiency of algorithms in 
agriculture through tailored parameter tuning. 

3. Summary 

3.1. Challenges 

The integration of artificial intelligence into rice disease detection and management faces a spectrum of challenges spanning 
technological, agricultural, and socioeconomic dimensions. These challenges collectively impact the successful implementation and 
widespread adoption of AI within the intricate ecosystem of rice farming [146]. 

Firstly, the development and training of AI models heavily hinge upon the quality and quantity of available datasets. Challenges 
arise in obtaining diverse and representative datasets for various rice diseases due to factors such as environmental variations, disease 
prevalence, and data accessibility. One significant challenge is the interpretability of CNNs, often referred to as “black box” models. 
The inability to explain the decision-making process of CNNs poses a challenge in gaining the trust of stakeholders, particularly farmers 
and agricultural experts, who may require insights into how predictions are made. CNNs may encounter difficulties in generalizing 
well to diverse and unseen conditions. Variability in factors such as rice varieties, growth stages, lighting conditions, and environ-
mental factors can affect the performance of CNN models, leading to suboptimal results in real-world agricultural settings [157,171]. 

Another limitation is the resource-intensive nature of CNN training, which requires significant computational resources and 
expertise. Smallholder farmers, who constitute a substantial portion of the global rice farming community, may face challenges in 
accessing these resources, hindering their ability to leverage CNN-based solutions effectively [90,172]. 

Table 4 
Top 5 countries of the researchers.  

Country Number of papers 

China 52 
India 36 
Bangladesh 6 
Saudi Arabia 4 
Egypt 3  
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Table 5 
Used algorithms.  

Paper Used algorithms Performance 

[88] VGG, ResNet Accuracy: 98.64 % 
[8] YOLOv3, RestNETV2 101, YOLOv5 Accuracy: 0.9904, Precision: >0.96, Recall: >0.96, F1-score: >0.96, 

AUC: 0.9987, Loss rate: 0.0042 
[134] VGG16, VGG19, Inception-V3, ResNet50 Accuracy: 95.3 % 
[135] Attention residual U-Net, U-Net, Attention U-Net Segmentation accuracy: 94.11 %, Dice coefficient: 0.9626, Jaccard 

coefficient: 0.6476 
[136] VGG16, DenseNet121, InceptionV3 Accuracy: 99.2 %, Sensitivity: 98.2 %, Specificity: 98.5 %, Precision: 

98.4 %, Recall: 98.2 %, F1-score: 98.5 % 
[137] VGG-16, VGG-19, Resnet50, Resnet101 Accuracy: 95 %, Precision: 97.5 %, Type-I error: 2.3 %, Type-II error: 

7.7 % 
[1] DenseNet201, Xception, MobileNetV2, ResNet50 Accuracy: 0.9803, 
[58] DenseNet121, Inceptionv3, MobileNetV2, ResNext101, Resnet152V, 

EfficientNetB7, Xception, AlexNet, GoogLeNet, VGG, Faster R–CNN, MobileNet, 
NasNet Mobile, SqueezeNet 

Accuracy: 97.9 % 

[138] GoogLeNet Accuracy: 99.58 % 
[59] VGG-16, GoogleNet Accuracy: 92.24 % 
[139] SURF, HOG, K-nearest neighbors, Support vector machine, ResNet-20 Accuracy: 96.7 % 
[140] AlexNet, GoogLeNet, ResNet50, MobileNetV3, SVM Recognition rate: 99.69 % 
[17] CNN, InceptionV3, ResNet50, VGG16, VGG19 Accuracy: 92 % 
[141] VGG16, VGG19, ResNet50, ResNet152, ResNet50V2, ResNet152V2, 

MobileNetV2, DenseNet121, DenseNet201, InceptionV3, Xception 
Accuracy: 84.4 % 

[142] ResNet-CBAM, Random Forest, SVM Accuracy: 97.21 %, Kappa: 96.55 
[60] AlexNet, ResNet 101, Inception V3 Accuracy: 99 % 
[61] CNN-SVM hybrid algorithm, VGG Accuracy: 97.1 % 
[100] LS-SVM, SAM, PLS-DA, PCA, CARS, SPA, KNN, RF, self-attention 1D-CNN Accuracy: 99.93 % 
[100] PCA, RF, AdaBoost, KNN, 2D-CNN, 3D-CNN, HybridCNN, 3D-CSAM-2DCNN Accuracy: 98.93 % 
[143] RDTNet, SVM, HOG, DCNN, XGBoost, VGG19, UNet, Vgg16, Random Forest, 

YOLOV3, ADSNN-OB, ML-SFFS 
Precision: 99.55 %, F1-score: 99.54 %, Accuracy: 99.53 % 

[64] RlpNet, YOLOv3, AlexNet, GoogLeNet, VGG-16, ResNet-34, FSSD, Faster-RCNN, 
YOLOv4 

Recall: 91.84 %, Precision: 92.14 %, F1-score: 91.87 %, Accuracy: 
91.84 %, Mean average precision (mAP): 86.72 %, Detection rate 
(DR): 93.92 % 

[144] Improved YOLOv5s, Improved YOLOv7-tiny F1-Score: 0.931, mAP (0.5): 0.961, mAP (0.5:0.9): 0.648 
[20] AlexNet, VGG-19, VGG-16, InceptionV3, MobileNet, ResNet-50 AlexNet: Accuracy 89.4 %, ResNet-50: Accuracy 86.1 % 
[145] AlexNet Accuracy: 94 %, Average percentage rating: 80.89 % 
[146] Inception layer, Residual connection, Depthwise separable convolution Accuracy: 99.66 % 
[147] SAMResNet, Basic CNN, VGG16 Accuracy: 97 % 
[101] Deep6mAPred, Deep6mA Accuracy: 0.9556 
[148] InceptionV3, AlexNet Accuracy: 99.64 %, 
[67] Xception, ResNet50, MobileNet, VGG16, Inception V3, DenseNet121, ViT, 

SANET 
Accuracy: 98.71 % 

[149] VGG16, ResNet101, MobileNet, EfficientNet-B0 Accuracy: 96.43 % 
[104] Faster-RCNN, SSD FID score: 26.67, KID score: 0.08, Precision: 0.49, Recall: 0.14, mAP: 

0.93 for Faster-RCNN, 0.91 for SSD 
[150] Improved Deep Residual Shrinkage Network (ICDRSN), Densenet, Shufflenet, 

Mobilenet, Resnet 
Precision: 98.89 %, Accuracy: 98.65 %, Recall: 98.68 % 

[151] DSGIResNet_AFF, AlexNet, VGG16, ShuffleNetV2, MobileNetV2, MobileNetV3- 
Small, MobileNetV3-Large 

Accuracy: 98.30 %, Sensitivity: 98.23 %, F1-score: 98.24 %, AUC: 
99.97 % 

[2] ResNet-50, Modified Red Deer Optimization Algorithm, Deep Learning 
Convolutional Neural Network (DLCNN) 

Accuracy: 99.68 %, F1-score: 99.71 % 

[152] Residual Network (ResNet), VGGNet, Gated Recurrent Units (GRU) Accuracy: 99 % 
[105] Inception, ResNet Accuracy: 98.21 % 
[106] CNN-VGG19 model, K-means clustering, Support Vector Machine (SVM), Canny 

edge detector 
Accuracy: 93.0 %, Sensitivity: 89.9 %, Specificity: 94.7 %, Precision: 
92.4 %, F1-score: 90.5 % 

[153] MobileNet, ResNet-20, VGGNet-16, GoogLeNet, AlexNet Accuracy of 90.71 % 
[154] AlexNet Recognition rate: 99.23 % 
[155] PaddyNet Accuracy: 98.99 % 
[156] Deep Convolutional Neuro-Fuzzy Method (DCNFM) Detection/recognition rate: 98.17 % 
[157] Mobile-Atten, MobileNet-V2 Accuracy: 98.48 % 
[14] DenseNet, Inception Accuracy: 98.63 % 
[72] VGG16 Accuracy: 96.45 %, loss: 0.09 
[126] SR-DCNN Accuracy: 98.95 % 
[158] CNNIR-OWELM (CNN with Inception-ResNet v2 and Optimal Weighted Extreme 

Learning Machine) 
Sensitivity: 0.905, Specificity: 0.961, Accuracy: 0.942 

[159] DenseNet-121, SE-ResNet-50, ResNeSt-50 Accuracy: 91 % 
[160] Faster R–CNN Accuracy: 99.25 % 
[75] InceptionV3, InceptionResnetV2, ResNet50, DenseNet201, MobileNet, 

EfficientNetB3 
Accuracy: 100 %, 

[161] AlexNet, M-Net Accuracy: 71 % 

(continued on next page) 
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The process of annotating and labeling images in datasets for supervised learning poses a significant hurdle. Accurate annotation of 
rice disease images requires domain expertise, and inconsistencies or errors in labeling can significantly impact the performance of 
CNN models, further exacerbating the challenges associated with data quality and quantity [172]. 

The successful implementation of AI in rice disease detection demands interdisciplinary collaboration between computer scientists, 
agronomists, plant pathologists, and farmers. Establishing effective communication and understanding the specific needs and chal-
lenges faced by each group is pivotal [125]. 

Deploying AI applications often requires robust infrastructure and high-speed connectivity, which may be lacking in remote or 
rural agricultural areas. Improving infrastructure and ensuring reliable internet access are essential for the seamless integration of AI 
technologies [149]. 

The initial investment and operational costs associated with implementing AI-based solutions pose a potential barrier, especially 
for resource-limited farmers. Developing cost-effective and scalable AI solutions is imperative to make these technologies accessible to 
a broader farming community [67]. 

Ethical concerns related to data privacy, ownership, and potential biases in AI algorithms require careful consideration. Estab-
lishing transparent and ethical frameworks for AI deployment in agriculture is essential to build trust among stakeholders [88]. 

The absence of clear regulatory frameworks for AI applications in agriculture can hinder widespread adoption. Developing reg-
ulatory guidelines that ensure the responsible and ethical use of AI technologies is imperative [173]. 

The dynamic nature of agricultural ecosystems necessitates continuous monitoring and evaluation of AI models’ performance. 
Implementing feedback loops and adaptive strategies is crucial for maintaining the effectiveness of AI-based solutions over time [174]. 

Addressing these limitations requires concerted efforts from researchers, policymakers, technology developers, and agricultural 
stakeholders. Collaborative endeavors are needed to develop more interpretable CNN models, improve generalization capabilities, and 
make AI-based solutions accessible to resource-limited farmers. Moreover, establishing transparent and ethical frameworks for AI 

Table 5 (continued ) 

Paper Used algorithms Performance 

[111] VGG16, InceptionV3, MobileNet, NasNet Mobile, SqueezeNet Accuracy: 93.3 % 
[162] VGGNet, Inception module Accuracy: 92.00 % 
[112] Inception-V3, VGG-16, Alex Net, MobileNet V2, ResNet-18 Accuracy: 96.23 % 
[163] GoogleNet, ResNet-18, SqueezeNet-1.0, DenseNet-121 Accuracy: 95.6 % 
[19] InceptionResNetV2 Accuracy: 95.67 % 
[128] VGG16 model, Resnet50 model, Densenet121 model Accuracy: 98.75 % 
[79] InceptionV3, InceptionResNetV2, DenseNet121, DenseNet169, DenseNet201 Accuracy: 98.33 % 
[164] YOLOv3, Faster R–CNN, RetinaNet, Mask R–CNN Accuracy: 95.6 % 
[119] ResNet, VGG, EfficientNet, MobileNet Accuracy: 99.67 %  

Table 6 
Hyperparameter optimization techniques.  

Paper Hyperparameter optimization techniques 

[165] Grid search, Random search, Bayesian optimization 
[7] Particle Swarm Optimization (PSO) 
[94] Binary Optimization, Particle Swarm Optimization, Squared Exponential Kernel 
[59] Tuning learning rate and number of iterations 
[95] Improved backtracking search algorithm 
[168] Genetic Algorithm, Firefly Algorithm, Cross-validation, Grid search, Random search, Bayesian Optimization, Adaptive technique 
[6] Rider Henry Gas Solubility Optimization (RHGSO) 
[62] Fine-tuning 
[100] End-to-end trainable attention module 
[143] Bayesian optimization 
[166] WOACW (Weight Cooperative Self-Mapping Chaos Optimization Algorithm) 
[93] Exhaustiveness and Brownian Motion-related Elephant Herding Optimization (EBM-EHO) algorithm 
[167] Quantum-Inspired Moth Flame Optimizer 
[67] Bayesian optimization 
[107] OLIHFA-BA 
[69] IAOF-CNN 
[71] Genetic algorithm, Artificial bee colony, Particle swarm optimization 
[125] Grid search 
[158] Flower Pollination Algorithm (FPA) 
[111] Hyperparameter tuning 
[169] Particle swarm optimization, Artificial fish swarm optimization (AFSO), Efficient artificial fish swarm optimization (EAFSO) 
[19] Fine-tuning 
[114] Grid search 
[115] Water Wave Optimization (WWO) 
[78] Bayesian optimization 
[170] Genetic algorithm 
[80] Hyperparameter tuning  
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deployment in agriculture is essential to build trust among stakeholders and ensure the responsible use of AI technologies in rice 
disease detection and management [14]. 

3.2. Opportunities 

The integration of artificial intelligence in rice disease detection and management offers a myriad of opportunities that span 
technological advancements, agricultural practices, and socioeconomic benefits. These opportunities hold the potential to significantly 
enhance the effectiveness and sustainability of rice cultivation, providing a positive outlook for the future of AI in the rice farming 
ecosystem [71]. 

AI enables precision agriculture through the provision of real-time data and insights to farmers. Utilizing sensors, drones, and 
satellite imagery, AI assists in monitoring rice crops, identifying diseases at early stages, and optimizing resource use, thereby 
enhancing productivity and resource efficiency [146]. 

AI-powered models have the capability to analyze vast datasets for the detection of subtle signs of diseases in rice crops before 
visible symptoms appear. Early detection facilitates prompt intervention, minimizing the spread of diseases and reducing yield losses, 
ultimately contributing to improved food security [175]. 

AI algorithms can tailor crop management strategies based on specific conditions such as soil health, climate, and disease prev-
alence. This customization optimizes inputs like fertilizers and pesticides, reducing environmental impact and enhancing overall 
sustainability [67]. 

The integration of AI fosters the adoption of technology in agriculture, even among smallholder farmers. User-friendly AI appli-
cations providing actionable insights empower farmers with valuable information, improving decision-making processes and 
enhancing overall farm management [90]. 

The implementation of AI in rice farming opens opportunities for capacity building and training programs. Educating farmers, 
agronomists, and other stakeholders on AI technologies enhances their understanding, ensuring the successful integration of these 
tools into agricultural practices [171]. 

The wealth of data generated by AI applications can inform evidence-based agricultural policies. Governments and policymakers 
can utilize this data to make informed decisions, allocate resources efficiently, and formulate strategies promoting sustainable agri-
culture and rural development [88]. 

The global nature of AI research and development facilitates international collaboration. Collaborative efforts among researchers, 
institutions, and governments lead to the exchange of knowledge, best practices, and innovative solutions, contributing to collective 
and accelerated progress in AI applications for rice disease management. The adoption of AI in rice farming opens avenues for eco-
nomic diversification. Entrepreneurs, startups, and technology companies can explore opportunities in developing and providing AI- 
based solutions for agriculture, stimulating economic growth and job creation [148]. 

AI can revolutionize crop breeding by analyzing genetic data to develop disease-resistant varieties with improved yields. This 
innovation in breeding technologies contributes to crop resilience, reducing dependency on chemical inputs and enhancing long-term 
sustainability [14]. 

AI’s contribution to the efficiency and resilience of rice cultivation plays a crucial role in addressing the challenges of global food 
security. Enhanced disease management, increased productivity, and sustainable agricultural practices supported by AI technologies 
collectively contribute to addressing the needs of a growing world population [173]. 

Harnessing these opportunities necessitates proactive collaboration among researchers, technology developers, policymakers, and 
farmers. By capitalizing on the transformative potential of AI in rice disease detection and management, stakeholders can collectively 
contribute to a more sustainable, resilient, and technologically advanced future for rice agriculture [109]. 

3.3. Future directions 

The future directions in the integration of artificial intelligence in rice disease detection and management hold promising avenues 
for further advancements and improvements in sustainable agriculture. These potential directions encompass technological in-
novations, research initiatives, and policy considerations, shaping the trajectory of AI applications in the rice farming ecosystem. 

Future research should focus on the development of advanced AI models capable of handling complex and dynamic interactions 
within rice ecosystems. This includes exploring deep learning architectures, reinforcement learning, and ensemble methods to enhance 
the accuracy and robustness of disease detection models. 

Integrating diverse data sources such as satellite imagery, climate data, and soil information can provide a holistic understanding of 
rice crop health. Future AI systems should be designed to seamlessly integrate multi-modal data, enabling more comprehensive and 
accurate disease prediction and management. 

Implementing edge computing solutions can enhance the real-time capabilities of AI applications in rice fields. Edge devices, 
equipped with AI algorithms, can process data locally, reducing latency and enabling timely decision-making in remote or resource- 
constrained agricultural areas. 

As AI becomes more integral to decision-making in agriculture, there is a growing need for explainable AI models. Future research 
should focus on developing models that provide transparent insights into decision processes, ensuring trust and understanding among 
farmers and stakeholders. 

Tailoring AI applications to be user-friendly and accessible to farmers is crucial. Future directions should emphasize the devel-
opment of farmer-centric AI tools with intuitive interfaces, enabling easy adoption and integration into existing farming practices. 
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With changing climate patterns, future AI models should account for climate resilience in disease prediction. Understanding the 
impact of climate change on disease prevalence and developing adaptive AI models will be vital for sustainable rice cultivation. 

Establishing collaborative platforms that facilitate knowledge exchange among researchers, farmers, and policymakers is essential. 
These platforms can accelerate the adoption of AI technologies, share best practices, and foster a collaborative ecosystem for sus-
tainable agriculture. 

Governments and international organizations should actively engage in developing clear policy frameworks for the ethical and 
responsible use of AI in agriculture. This includes addressing data privacy, and ownership, and ensuring fair access to AI technologies 
for farmers of varying scales. 

Future initiatives should prioritize capacity-building programs to enhance the skills and understanding of farmers, agronomists, 
and extension workers in utilizing AI tools. Training programs can empower stakeholders to effectively implement and leverage AI for 
improved rice disease management. 

Ensuring the long-term sustainability of AI applications in rice farming requires ongoing research on ecological impacts, socio- 
economic considerations, and scalability. Striking a balance between technological innovation and sustainable agricultural prac-
tices is pivotal for the enduring success of AI in rice disease detection and management. 

By focusing on these future directions, the field can advance towards a more resilient, inclusive, and sustainable integration of AI in 
rice agriculture, ultimately contributing to global food security and the well-being of farming communities. 

4. Conclusion 

In conclusion, the integration of AI into rice disease detection marks a significant advancement with far-reaching implications for 
sustainable agriculture. Recognizing the pivotal role of rice in global ecosystems and human nutrition, addressing challenges in disease 
management becomes imperative. This review underscores the transformative potential of AI in revolutionizing traditional ap-
proaches, offering avenues for early detection, precision agriculture, and tailored crop management strategies. However, it is crucial to 
acknowledge and tackle challenges such as data quality, algorithm generalization, and resource constraints, particularly for small-
holder farmers. 

The comprehensive literature review provides insights into existing datasets, preprocessing strategies, and a diverse array of al-
gorithms utilized in rice disease detection. Understanding the global landscape, including the distribution of data sources and re-
searchers, fosters collaborative efforts essential for effective AI implementation. Performance metrics such as accuracy, precision, 
recall, and F1 score serve as critical benchmarks for evaluating AI model effectiveness. 

The summary section sheds light on multifaceted challenges associated with AI implementation, from data quality to ethical 
considerations. Concurrently, it unveils opportunities such as precision agriculture, economic diversification, and advancements in 
crop breeding. Future directions emphasize the need for advanced AI models, integration of multi-modal data, and the development of 
farmer-centric tools, all aimed at fostering a resilient and inclusive integration of AI in rice agriculture. 

The synthesis of challenges, opportunities, and future directions outlined in this review provides a roadmap for stakeholders, 
including researchers, policymakers, and farmers, to collaboratively navigate toward a sustainable and technology-driven future for 
rice disease detection. Prioritizing capacity building, policy frameworks, and long-term sustainability is essential as we harness the full 
potential of AI to address global food security challenges and ensure the prosperity of farming communities. 

CNN models are particularly effective in the detection of rice diseases because they have the capacity to autonomously extract and 
learn hierarchical features from images, thereby capturing complex disease patterns. Their resilience to changes in illumination, scale, 
and rotation renders them suitable for agricultural environments with a variety of environmental conditions. Benefiting from data 
augmentation and transfer learning, CNNs effectively manage large datasets, thereby improving their accuracy. They can be incor-
porated with advanced techniques such as attention mechanisms to enhance performance, and their spatial invariance guarantees 
consistent pattern recognition. In addition, CNNs are capable of processing multispectral and hyperspectral images, which enable the 
detection of disease symptoms that are not visible to the naked eye. Consequently, they can provide a precise and early identification of 
rice diseases. 

CNNs have greatly increased rice disease detection accuracy and timeliness. These algorithms can accurately detect and categorize 
numerous illnesses using huge and varied information, which is essential for early intervention and disease management. Machine 
learning models may be scaled and tailored to diverse locales and situations to meet rice-growing region illness characteristics. Ma-
chine learning in rice production will benefit from integration with IoT, drones, and remote sensing, which can give real-time data 
inputs and improve disease monitoring and management models. Large, annotated datasets and machine learning model interpret-
ability remain problems despite these encouraging advances. To overcome these problems, future research should construct more 
visible and explainable models and improve data gathering and annotation. Machine learning may also improve farm sustainability. 
These technologies enable tailored pesticide, fertilizer, and other input usage, reducing environmental impact and improving resource 
efficiency. 
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