Supplemental material

Rapid synthesis of azoindolizine derivatives via aryldiazonium salts

Ferruh LAFZI*

Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Türkiye

*Correspondence: farrokh.lafzi@atauni.edu.tr

NMR Spectra

Figure S1. ¹H NMR (400 MHz) and ¹³CNMR (100 MHz) spectra of 2a (DMSO- d_6)

Figure S2. ¹H NMR (400 MHz) and ¹³CNMR (100 MHz) spectra of **2b** (Acetone- d_6)

Figure S3. ¹H NMR (400 MHz) and ¹³CNMR (100 MHz) spectra of 2c (Acetone- d_6)

 $<_{8.34}^{8.79}$

Figure S4. ¹H NMR (400 MHz) and ¹³CNMR (100 MHz) spectra of **2d** (Acetone-*d*₆)

Figure S5. ¹H NMR (400 MHz) and ¹³CNMR (100 MHz) spectra of 2e (DMSO- d_6)

Figure S6. ¹H NMR (400 MHz) and ¹³CNMR (100 MHz) spectra of **2f** (DMSO-*d*₆)

---- 4.05

 $< \frac{8.63}{8.60}$

 $< \frac{7.50}{7.48}$

Figure S7. ¹H NMR (400 MHz) and ¹³CNMR (100 MHz) spectra of **2g** (DMSO-*d*₆)

10.18 10.18 10.16 10.16 10.28 10.28 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.24 10.23 10.24 10

Figure S8. ¹H NMR (400 MHz) and ¹³CNMR (100 MHz) spectra of **3a** (DMSO-*d*₆)

Control 10,12 Cont

Figure S9. ¹H NMR (400 MHz) and ¹³CNMR (100 MHz) spectra of **3b** (DMSO- d_6)

Figure S10. ¹H NMR (400 MHz) and ¹³CNMR (100 MHz) spectra of 3c (DMSO- d_6)

Figure S11. ¹H NMR (400 MHz) and ¹³CNMR (100 MHz) spectra of 3d (DMSO- d_6)

Figure S12. ¹H NMR (400 MHz) and ¹³CNMR (100 MHz) spectra of 3e (DMSO- d_6)

Figure S13. ¹H NMR (400 MHz) and ¹³CNMR (100 MHz) spectra of 3f (DMSO- d_6)

Figure S14. ¹H NMR (400 MHz) and ¹³CNMR (100 MHz) spectra of 3g (DMSO- d_6)

Figure S15. ¹H NMR (400 MHz) and ¹³CNMR (100 MHz) spectra of **3h** (DMSO- d_6)