

D3.2 Installation Report

Deliverable type R – Document, report

Dissemination level PU - Public

Due date (month) M13

Delivery submission date 29 February 2024

Work package number WP3

Lead beneficiary IOTIQ GmbH

This project has received funding from the Horizon Europe Framework

Programme of the European Union under grant agreement No. 101094428

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 1010944281

Funded by the European Union. Views and opinions expressed are however those of the author(s)

only and do not necessarily reflect those of the European Union or European Commission. Neither

the European Union nor the granting authority can be held responsible for them.

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 1010944282

Document Information

Project number 101094428 Acronym CULTURATI

Project name Customized Games and Routes For Cultural Heritage and Arts

Call HORIZON-CL2-2022-HERITAGE-01

Topic HORIZON-CL2-2022-HERITAGE-01-02

Type of action HORIZON-RIA

Project starting date 1 February 2023 Project duration 36 months

Project URL http://www.culturati.eu

Document URL https://culturati.eu/deliverables/

Deliverable number D3.2

Deliverable name Installation Report

Workpackage number WP3

Work package name System Testing and Verification

Date of delivery Contractual M13 Actual M13

Version Version 1.0

Lead beneficiary IOTIQ GmbH

Responsible author(s) Dr. Metin Tekkalmaz, IOTIQ GmbH, metin@iotiq.com

Reviewer(s) Neşe Şahin Özçelik, Bilkent Universitesi Vakif, nozcelik@bilkent.edu.tr

Eda Gürel, Bilkent Universitesi Vakif, eda@tourism.bilkent.edu.tr

Short Description This report offers a comprehensive analysis of the site-specific system

installation for the CULTURATI platform, detailing the settings utilized

and issues encountered during the process. Each setting is accompanied

by a rationale, providing insight into the decision-making process, while

each issue is discussed in terms of its impact and actionable suggestions

for resolution. Through this thorough examination, the document aims

to provide valuable insights into the installation process, facilitating

informed decision-making and smoother implementation of the

CULTURATI platform across diverse cultural sites.

History of Changes

https://culturati.eu/deliverables/
mailto:metin@iotiq.com
mailto:nozcelik@bilkent.edu.tr
mailto:eda@tourism.bilkent.edu.tr

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 1010944283

Date Version Author Remarks

13 March 2024 Draft 0.1 Metin Tekkalmaz First version

15 March 2024 Version 0.1 Metin Tekkalmaz Revised after Review

25 March 2024 Version 0.2 Metin Tekkalmaz Revised after Review

29 March 2024 Version 1.0 Metin Tekkalmaz Revised after Review

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 1010944284

Executive Summary

This report documents the successful installation of various components for the CULTURATI platform

and system. It outlines the implementation of strategically placed sensors in the Ankara Citadel to

monitor crowd levels, along with the setup of two servers in Germany for production and testing

purposes. The authentication server, Keycloak, is undergoing pilot testing on the staging server

before full deployment. Additionally, the CULTURATI Main Application and CULTURATI Wiki

Application followed standard development processes, with plans for deployment upon successful

testing. Notably, the CULTURATI Wiki will host separate instances for the Ankara Citadel and İstanbul

Rahmi M. Koç Museum. The report also addresses site-specific settings and encountered issues,

providing rationales for settings and suggestions for issue resolution. Overall, this comprehensive

approach ensures the successful installation of the CULTURATI platform and sets the stage for its

deployment across other pilot sites in Europe.

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 1010944285

Table of Contents

Executive Summary 4

1. Introduction 6

2. Sensor Installation and Integration 6

3. Server Installation 7

3.1. CULTURATI Keycloak Server 7

3.1.1. General Information 7

3.1.2. Installation Instructions 7

4. Application 8

4.1. CULTURATI Main Application 8

4.1.1. General Information 8

4.1.2. Installation Instructions 8

4.1.3. Configuring Additional Sites/Institutions 9

4.1.3.1. Keycloak Configuration 9

4.1.3.2. Backend Application Configuration 9

4.2. CULTURATI Content Management Application (CULTURATI Wiki) 10

4.2.1. General Information 10

4.2.2. Installation Instructions 10

Conclusion 18

Appendix A. PROJECT SENSOR INSTALLATION REPORT 19

Appendix B. CULTURATI Keycloak docker-compose.yml file 27

Appendix C. CULTURATI Backend docker-compose.yml file 29

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 1010944286

1. Introduction

This report serves as a comprehensive documentation of the successful installation of various

components for the CULTURATI platform and system. It encapsulates our journey in enhancing

crowd monitoring capabilities within the Ankara Citadel, showcasing the strategic deployment of

sensors to provide real-time data for analysis. Additionally, the establishment of two servers in

Germany, dedicated to production and testing (staging) respectively, ensures the seamless operation

of CULTURATI web applications.

Our primary focus lies in meticulously crafting a robust infrastructure to support the objectives of

the CULTURATI platform. Keycloak, our authentication server, is currently undergoing pilot testing

on the staging server to guarantee its seamless integration before full deployment. Moreover, the

development process strictly adheres to standard procedures, with the CULTURATI Main Application

and CULTURATI Wiki Application undergoing rigorous testing phases before deployment on the

production server.

A notable feature of our implementation strategy is the customization of the CULTURATI Wiki to

cater to the specific needs of cultural sites, exemplified by its tailored instances for the Ankara

Citadel and Istanbul Rahmi M. Koç Museum. This meticulous approach ensures that our platform is

finely tuned to meet the diverse requirements of cultural heritage management.

Furthermore, the procedures outlined in this report are pivotal not only for the successful

installation in Ankara but also serve as a blueprint for deployment across other pilot sites in Europe.

By providing detailed accounts of site-specific settings and discussions on encountered issues, we

aim to facilitate a thorough understanding of the implementation process, thereby ensuring a

consistent and reliable platform for efficient crowd management and user experience enhancement

across multiple cultural sites.

In the subsequent sections, we will provide more information about our methodology, challenges

faced, and solutions devised in our endeavor to revolutionize cultural site management with the

CULTURATI platform.

2. Sensor Installation and Integration

The Ankara Governorship has acquired sensors for crowd detection within the Ankara Citadel area.

These sensors have been strategically installed at predefined locations to effectively monitor crowd

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 1010944287

levels. The data collected from these sensors is easily accessible to our technical team and is ready

for seamless integration into the CULTURATI applications. For detailed information regarding the

sensors installed at locations specified by the Ankara Governorship, including their installation

process and technical specifications for ongoing support, please refer to Appendix A.

3. Server Installation

Two servers designated for the CULTURATI Web Applications have been successfully installed. These

servers, operating under the Ubuntu 22.04 system, are located in Germany. One server is designated

as the production server, while the other serves as the staging server. Initial deployments will occur

on the staging server to facilitate comprehensive testing. Upon successful testing on the staging

server, final deployments will be carried out on the production server.

3.1. CULTURATI Keycloak Server

3.1.1. General Information

Keycloak, the authentication server, has been successfully installed on the CULTURATI Staging

server. Once pilot tests on the staging server are successfully completed, Keycloak will be deployed

on the CULTURATI Production servers.

3.1.2. Installation Instructions

Server Requirements:

The server must have installed the following programs

● Docker version 24.0.7, build afdd53b

● Docker-compose version 1.29.2, build 5becea4c

Required docker-compose.yml file can be found in Appendix B. One should run “docker compose” in

the folder containing this file:

- docker compose up –d

This command will execute all the components needed by the CULTURATI backend application

including the database server itself.

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 1010944288

4. Application

4.1. CULTURATI Main Application

4.1.1. General Information

In the typical feature development process, the CULTURATI Main Application follows a sequential

installation path on the specified servers:

1. IOTIQ Development Server.

2. CULTURATI Staging Server.

3. CULTURATI Production Server.

During the initial installation of the CULTURATI Main Application, the process was executed

accordingly, with the application being installed on the development server and staging server.

Following successful pilot tests, the final installation on the production server will be conducted.

4.1.2. Installation Instructions

CULTURATI application includes backend and frontend applications. Backend application is delivered

as a docker image which will be installed using docker. Frontend application is delivered as a folder

which should be placed at a specific location at the server.

Server Requirements:

The server must have installed the following programs

● Docker version 24.0.7, build afdd53b

● Docker-compose version 1.29.2, build 5becea4c

Backend application:

Required docker-compose.yml file can be found in Appendix C. One should run “docker compose” in

the folder containing this file:

- docker compose up –d

This command will execute all the components needed by the CULTURATI backend application

including the database server itself.

Frontend Application:

Frontend application is delivered as a folder which should be placed under

`/var/www/culturati/culturati-admin-frontend/dist` folder for admin application and

`/var/www/culturati/culturati-user-frontend/dist` folder for visitor application.

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 1010944289

4.1.3. Configuring Additional Sites/Institutions

4.1.3.1. Keycloak Configuration

For adding a new site/institution to the application, a few configurations should be made in

keycloak:

Adding a new realm: Adding a new realm on keycloak is an easy task which is explained in detail in

keycloak official documentation (https://www.keycloak.org/docs/latest/server_admin/#configuring-

realms):

 Point to the top of the left pane.

 Click Create Realm

 Enter a name for the realm. (institution name.)

 Click Create

Adding a new client in the realm: Adding a new client on keycloak is an easy task which is explained

in the official keycloak documentation (https://www.keycloak.org/docs/latest/server_admin/#proc-

creating-oidc-client_server_administration_guide)

 Select the realm which is created

 Click Clients in the menu.

 Click Create client

 Leave Client type set to OpenID Connect.

 Enter a Client ID. This ID is an alphanumeric string that is used in OIDC requests and

in the Keycloak database to identify the client.

 Supply a Name for the client.

 Click Save.

 Navigate to Settings:

 Set Root URL, Home URL, Valid post logout redirect URIs, Admin URL to:

https://<institution-sub-domain>.admin.culturati.app

 Set Valid redirect URIs to: https://<institution-sub-

domain>.admin.culturati.app /*

 Set Web origins to ‘+’ .

4.1.3.2. Backend Application Configuration

A configuration file should be created for a new institution. After creating this file backend

application/container should be restarted. For adding a new site/institution to the application:

https://www.keycloak.org/docs/latest/server_admin/#proc-creating-oidc-client_server_administration_guide
https://www.keycloak.org/docs/latest/server_admin/#proc-creating-oidc-client_server_administration_guide

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442810

 a configuration file should be added to the application folder. (under tenants directory.) The

as name will be used also for the database name that will be created for this institution. The

configuration is as follows:

name=<name of the institution>

datasource.url=jdbc:postgresql://culturati-db:5432/<name>

datasource.username=<database-user-name>

datasource.password=<database-password>

datasource.driver-class-name=org.postgresql.Driver

keycloak.url=<project-keycloak-url>

keycloak.realm=<name> (this should match the name of the keycloak realm that is

created for the institution)

keycloak.clientId=<client-id> (the client-id for the client created in Keycloak.)

map.center=<coordinate of the center of site map>

map.boundingBox=<right top coordinate, left bottom coordinate>

xwiki.username=<nimbeo api username>

xwiki.password= <nimbeo api password>

xwiki.baseUrl= <nimbeo api url for the institution>

4.2. CULTURATI Content Management Application (CULTURATI Wiki)

4.2.1. General Information

In the standard feature development process, the installation sequence for the Culturati Wiki

Application is as follows:

1. Nimbeo Development Server.

2. CULTURATI Staging Server.

3. CULTURATI Production Server.

During the initial installation of the CULTURATI Wiki Application, the process unfolded by installing

the application on the development server. Subsequently, two Wiki instances, catering to Ankara

Citadel and RMK, will be installed on the staging server. Following successful pilot tests, the

installation of the two instances will be extended to the production server.

4.2.2. Installation Instructions

Software prerequisites

The server must have installed the following programs:

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442811

 Docker version 24.0.7, build afdd53b

 Docker-compose version 1.29.2, build 5becea4c

Server settings

Minimum characteristics

 Operating system: Ubuntu 22.04.3 LTS x86_64

 Kernel: 5.15.0-25-generic

 Memory: 8 GB

 Processor: AMD EPYC 7282 (4) @ 2.794GHz

 Hard Disk Drive 800 GB SSD

Recommended features

 Operating system: Ubuntu 22.04.3 LTS x86_64

 Kernel: 5.15.0-25-generic

 Memory: 60 GB

 Processor: Intel Core I9 13900K 3.0 GHz

 Hard Disk: 800 GB SSD

Software prerequisites

The server must have installed the following programs:

● Docker version 24.0.7, build afdd53b

● Docker-compose version 1.29.2, build 5becea4c

Install these programs as follows:

1. Update the apt package index by using the next command:

sudo apt update

2. Install the necessary packages for apt to use packages over HTTPS:

sudo apt install apt-transport-https ca-certificates curl software-properties-common

3. Add the official Docker GPG key:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o

/usr/share/keyrings/docker-archive-keyring.gpg

4. Add the Docker repository to the apt sources:

https://download.docker.com/linux/ubuntu/gpg

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442812

echo "deb [arch=$$(dpkg --print-architecture) signed by=/usr/share/keyrings/docker-archive-

keyring.gpg] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" | sudo tee

/etc/apt/sources.list.d/docker.list > /dev/null

5. Update the apt package index again:

sudo apt update

6. Install Docker:

sudo apt install docker-ce docker-ce-cli containerd.io

Installing Docker Compose:

1. Install pip for Python:

sudo apt install python3-pip

2. Install Docker Compose:

sudo pip install docker-compose==1.29.2

Or alternatively, using curl directly from GitHub:

sudo curl -L "https://github.com/docker/compose/releases/download/1.29.2/docker-

compose-$(uname -s)-$$(uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

Wiki configuration

Wiki database configuration:

The developed Wiki uses a PostgreSQL database and is encapsulated in a Docker container, the

configuration steps are as follows:

The development team delivers two components:

1. pgdata.zip: a compressed file with the database backup

2. xwiki-postgres.tar: Compressed file with the docker image

The above files are used as follows:

Unzip the pgdata.zip file and open a terminate and execute the next command :

 docker load -i postgres-xwiki.tar

Finally, execute the command:

docker run --net=xwiki-nw --name xwiki-dev-postgres \

-p 5434:5432 -v ${PWD}/pgdata/data:/var/lib/postgresql/data

\{{PWD}/pgdata/data:/var/lib/postgresql/data

https://download.docker.com/linux/ubuntu
https://github.com/docker/compose/releases/download/1.29.2/docker-compose-$(uname
https://github.com/docker/compose/releases/download/1.29.2/docker-compose-$(uname

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442813

-e POSTGRES_ROOT_PASSWORD=culturati23-pass \

-e POSTGRES_USER=culturati23-user \

-e POSTGRES_PASSWORD=culturati23-pass \

-e POSTGRES_DB=xwiki

-e POSTGRES_INITDB_ARGS="--encoding=UTF8" \

-d xwiki-dev-postgres-img:latest

With these steps the database is deployed and fully configured, you can test the access using a client

such as DBeaver and the following data:

Server IP: As is natural this parameter will vary depending on which server the database is installed

on, it can be obtained using the console command:

hostname -I

 Port: 5434

 User: culturati23-user

 Password: culturati23-pass

 Database: xwiki

Installing the Wiki application:

Please follow the next Docker commands for a xWiki Development Environment:

1. Commit Changes to XWiki Container command: docker commit xwiki xwiki-dev-img

Description: Saves the current state of the 'xwiki' container as a new image named 'xwiki-

dev-img'. Useful for capturing modifications for future use.

2. Save XWiki Image to a TAR File command: docker save -o xwiki-dev-img.tar xwiki-dev-img

Description: Saves the 'xwiki-dev-img' Docker image to a TAR file. Enables transportation and

loading into other Docker environments.

3. Create Directory for XWiki Data command: mkdir data_wiki

Description: Creates a directory on your local filesystem for storing XWiki's persistent data.

4. Copy XWiki Data from Container command:

docker cp xwiki:/usr/local/xwiki data_wiki

Description: Copies XWiki data from the container to the local 'data_wiki' directory for

backup or migration.

5. Commit Changes to PostgreSQL Container command:

docker commit postgres-xwiki xwiki-dev-postgres-img

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442814

Description: Saves the current state of the 'postgres-xwiki' container as a new image with

the database setup for XWiki.

6. Save PostgreSQL Image to a TAR File command:

docker save -o xwiki-dev-postgres.tar xwiki-dev-postgres-img

Description: Saves the 'xwiki-dev-postgres-img' Docker image to a TAR file for backup or

distribution.

7. Create Directory for PostgreSQL Data command: mkdir pgdata

Description: Creates a directory for storing PostgreSQL data persistently.

8. Copy PostgreSQL Data from Container command:

docker cp postgres-xwiki:/var/lib/postgresql/data pgdata

Description: Backs up or migrates PostgreSQL data by copying it from the container to the

'pgdata' directory.

9. Run PostgreSQL Container for XWiki Development command:

docker run --net=xwiki-nw --name xwiki-dev-postgres -p 5434:5432 -v

${PWD}/pgdata/data:/var/lib/postgresql/data -e POSTGRES_ROOT_PASSWORD=culturati23-

pass -e POSTGRES_USER=culturati23-user -e POSTGRES_PASSWORD=culturati23-pass -e

POSTGRES_DB=xwiki -e POSTGRES_INITDB_ARGS="--encoding=UTF8" -d xwiki-dev-postgres-

img:latest

Description: Runs a new PostgreSQL container with configuration for XWiki development,

linking to persisted data.

10. Load XWiki Image from TAR File command: docker load -i xwiki-img.tar

Description: Loads an XWiki Docker image from a TAR file, useful for image transfer.

11. Execute the xWiki Development Container command:

docker run --net=xwiki-nw --name xwiki-dev --link xwiki-dev-postgres:xwiki-dev-postgres -p

8081:8080 -v ${PWD}/data_wiki/xwiki:/usr/local/xwiki -e DB_USER=culturati23-user -e

DB_PASSWORD=culturati23-pass -e DB_DATABASE=xwiki -e DB_HOST=xwiki-dev-postgres -d

xwiki-dev-img:latest

Description: Runs the XWiki development container, linking to the PostgreSQL container and setting

up database connectivity.

Installing multiple Wiki for multiple institutions:

For each institution, it is necessary to install a separate instance of the wiki. This process can be

carried out on a single server, using one of the following strategies to differentiate each installation:

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442815

Port Differentiation: A unique port is assigned to each wiki on the server. In this way, each instance

is distinguished by its specific port configuration.

Use of Specific Domains: Each institution acquires its own domain and configures its DNS records to

point to the server hosting its wiki. On the server, requests can be handled by Nginx, which acts as an

intermediary, redirecting each request to the Docker container corresponding to the institution's

wiki.

By selecting the method that best suits the user to differentiate the Wiki installations and following

the steps mentioned above, you will have no problems to run the wiki correctly.

Important clarification: Since this installation is done through a Docker image, no dependency or

specific version is required to perform the above steps, since the version management is inside the

containers, making it unnecessary to install dependencies or specific software versions, just follow

the mentioned steps above.

Safety measures into the Wiki

Assign password to a user:

Once the Wiki is installed, select the side menu and click on 'Manage Wiki', there you will see the

'Users & Rights' section and within this you will find the 'Users' menu.

Here you will find a list of all the users registered in the Wiki, if you click on any of them, you will be

able to make configurations for each user, among them, change the password or modify the group to

which the selected user belongs.

Note that the action of resetting passwords can only be done by the super user Wiki administrator,

this by default is the user with which the installation steps mentioned in the previous section are

done.

Adding a user to a group:

In the global configuration section (accessing from the side menu) you can see the section of groups

and users within the Wiki:

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442816

By clicking on 'Groups' you will be able to create the group that the user considers necessary,

although by default you will find the groups shown below:

The 'xWikiAdminGroup' group is the group that contains only users with advanced knowledge of the

Wiki flow, users who are part of this group will have super user permissions on the Wiki, so it is a

sensitive role that few people should have access to.

The 'xWikiAllGroup' group is the default group that is assigned to a user that has been created and

no specific group has been specified at the time of its creation in the Wiki.

The other remaining groups (content-creators, content-editor, data-entry-operators) are the groups

that were created to differentiate the roles between users who use Culturati, each of these groups

can do different actions in the Wiki and each one of them has its own interface.

Assign a group to a user:

To assign a group to a user, simply go to the groups section mentioned in the previous steps, find the

group to which you want to add the user and click 'Edit', in which you will see the following interface:

By clicking on the 'Users to Add' field, the list of all the users created in the Wiki will be displayed,

select one or more of them and finally click the 'Add' button.

If, on the other hand, you want to remove a user from a specific group, repeat the previous step and

when you see the user to be removed from the group, simply click on the 'remove' button that has a

red arrow that can be seen in the previous image.

Backup strategies

If you want to generate a backup copy of all the data held by the Wiki, we have made this process

easier only by following the following Docker commands:

1. docker commit xwiki xwiki-img

2. docker save -o xwiki-img.tar xwiki-img

3. mkdir data_wiki

4. docker cp xwiki:/usr/local/xwiki data_wiki

5. docker commit postgres-xwiki postgres-xwiki-img

6. docker save -o postgres-xwiki.tar postgres-xwiki-img

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442817

7. docker exec -t postgres-xwiki pg_dumpall -c -U culturati23-user > backup_db.sql

8. mkdir pgdata

9. docker cp postgres-xwiki:/var/lib/postgresql/data pgdata

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442818

Conclusion

This document provides a comprehensive overview of the installation process for the system of

CULTURATI, focusing on crucial components such as sensor deployment, server infrastructure, and

authentication setup. It details the completion of sensor deployment in the Ankara Citadel and the

seamless integration of data into the system. Additionally, it outlines the meticulous setup of server

infrastructure and authentication mechanisms, with rigorous testing underway to ensure a smooth

launch of the CULTURATI applications. Thus, this document highlights the significant progress made

in implementing the system of CULTURATI and sets the stage for its successful deployment.

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442819

Appendix A. PROJECT SENSOR INSTALLATION REPORT

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442820

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442821

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442822

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442823

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442824

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442825

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442826

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442827

Appendix B. CULTURATI Keycloak docker-compose.yml file

version: "3.9"

services:

 keycloak:

 container_name: keycloak

 image: "keycloak/keycloak:22.0.5"

 restart: always

 hostname: culturati-keycloak

 ports:

 - 9080:8080

 volumes:

 - ./keycloak/config:/opt/keycloak/data/import

 environment:

 KEYCLOAK_ADMIN: admin

 KEYCLOAK_ADMIN_PASSWORD: <desicred admin password>

 KC_HOSTNAME: <desired keycloak hostname e.g.:keycloak.culturati.app>

 KC_HOSTNAME_STRICT: 'false'

 KC_HOSTNAME_STRICT_HTTPS: 'false'

 KC_PROXY: edge

 KC_DB_URL_HOST: postgres

 KC_DB_SCHEMA: public

 KC_DB_USERNAME: keycloak

 KC_DB_PASSWORD: <desired keycloak database password>

 KC_DB: postgres

 deploy:

 resources:

 limits:

 cpus: '1.0'

 memory: '2G'

 entrypoint: ["/opt/keycloak/bin/kc.sh", "start-dev", "--import-realm"]

 postgres:

 image: postgres:15.4-alpine3.18

 restart: always

 environment:

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442828

 POSTGRES_USER: keycloak

 POSTGRES_PASSWORD: <desired keycloak database password>

 POSTGRES_DB: keycloak

 volumes:

 - postgres_data:/var/lib/postgresql/data

 - ./data:/docker-entrypoint-initdb.d

volumes:

 postgres_data:

 driver: local

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442829

Appendix C. CULTURATI Backend docker-compose.yml file

version: '3.1'

services:

 culturati-backend:

 image: iotiqdevops/culturati-backend:latest

 restart: unless-stopped

 container_name: culturati-backend

 depends_on:

 - culturati-db

 ports:

 - "8095:8080"

 environment:

 - spring.profiles.active=staging

 - defaultTenant=rmkm

 - app.jwt.secret=<any secret here>

 - seed.users.admin.password=<desired admin password>

 volumes:

 - ./tenants:/app/resources/tenants-staging

 - ./files:/files

 culturati-db:

 image: postgres:15.2-alpine

 restart: unless-stopped

 environment:

 - POSTGRES_USER=postgres

 - POSTGRES_PASSWORD=postgres

 - POSTGRES_DB=rmkm

 volumes:

 - db-data:/var/lib/postgresql/data

 otel-collector:

 image: otel/opentelemetry-collector-contrib:0.89.0

 restart: always

 command:

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442830

 - --config=/etc/otelcol-contrib/otel-collector.yml

 volumes:

 - ./docker/collector/otel-collector.yml:/etc/otelcol-contrib/otel-collector.yml

 ports:

 - "8889:8889" # Prometheus exporter metrics

 - "13133:13133" # health_check extension

 - "4317:4317" # OTLP gRPC receiver

 - "4318:4318" # OTLP http receiver

 deploy:

 resources:

 limits:

 cpus: '1.0'

 memory: '1G'

 prometheus:

 container_name: prometheus

 image: prom/prometheus:v2.48.0

 restart: always

 command:

 - --config.file=/etc/prometheus/prometheus.yml

 volumes:

 - ./docker/prometheus/prometheus.yml:/etc/prometheus/prometheus.yml

 ports:

 - "9090:9090"

 deploy:

 resources:

 limits:

 cpus: '1.0'

 memory: '1G'

 loki:

 image: grafana/loki:2.9.2

 restart: always

 command: -config.file=/etc/loki/local-config.yaml

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442831

 ports:

 - "3100:3100"

 deploy:

 resources:

 limits:

 cpus: '1.0'

 memory: '1G'

 tempo:

 image: grafana/tempo:2.3.0

 command: ["-config.file=/etc/tempo.yml"]

 volumes:

 - ./docker/tempo/tempo.yml:/etc/tempo.yml

 - tempo-data:/tmp/tempo

 ports:

 - "3200:3200"

 - "4317"

 deploy:

 resources:

 limits:

 cpus: '1.0'

 memory: '1G'

 grafana:

 container_name: grafana

 restart: unless-stopped

 image: grafana/grafana:10.2.2

 environment:

 - GF_SECURITY_ADMIN_PASSWORD=<grafana_admin_pass>

 - GF_SECURITY_ADMIN_USER=admin

 volumes:

 - ./docker/grafana/grafana-

datasources.yml:/etc/grafana/provisioning/datasources/datasources.yml

 - grafana-storage:/var/lib/grafana

Deliverable 3.2 Installation Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 10109442832

 ports:

 - "3000:3000"

 deploy:

 resources:

 limits:

 cpus: '1.0'

 memory: '1G'

volumes:

 db-data:

 tempo-data:

 driver: local

 grafana-storage:

 driver: local

