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nte Carlo simulations [6], renormalization group methods [7], the effective-field theory
and Monte Carlo renormalization group techniques [9]. In this contex the exact so-
jon of the model on the Bethe lattice [10], the honeycomb lattice [11] and the square
tice [12] could be mentioned. Due to their intrinsic complexity, spin-1 quantum models
ve also been investigated extensively [13].

Nonequilibrium properties of a spin-1 Ising system has been also studied by the
h probability method [14], and multidimensional kinetic model based on the Glauber
del [15], and the real-space renormalization group technique [16].

Recently stable, metastable and unstable solutions of a spin-1 Ising model with
itrary J and K pair interactions has been studied for zero magnetic field [17]as well as
external magnetic field is present [18].

The purpose of the present paper is to study the spin-1 Ising model Hamiltonian
h arbitrary bilinear and biquadratic exchange interactions for the magnetic fields due to
dipole and quadrupole moments, Hg and Hg respectively. Especially, find the stable,
netastable and unstable solutions of order parameters and investigate the behaviours of
thermal variations of these solutions as a function of the reduced temperature.

Our plan of exposition is as follows: In section 2, the model description is given. In
tion 3, the set of self-consistent equations is obtained in order to analyze the equilibrium
perties of the system. Finally, the discussion of the results is presented in the last
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Abstract
Description of the spin-1 Isin del
The spin-1 Ising model with bilinear (J) and biquadratic (K) exchange inter- P P § mode

actions is studied for magnetic fields due to the dipole and quadrupole moments,
Hs and Hg respectively, by using the lowest approximation of the cluster variation
method. Stable, metastable and unstable solutions of order parameters are found
and the behaviours of the thermal variations of these solutions as a function of the
reduced temperature are investigated. These solutions and their classifications are
checked by displaying the contour mapping of the free energy surfaces in the two
dimensional phase space.

The spin-1 Ising system is a three-state and two-order parameters system. The
rage value of each of the spin states will be indicated by X;,X, and X5, which
also called the state or point variables. X; is the average fraction of spins with
ue +1, X is the average fraction of spins that have the value 0, and X3 is the average
ction of spins that have the value —1. These variables obey the following normalization

3
1. Introduction ZXi =1 (1)
i=1
Two long-range order parameters are introduced as follows: (1) The average mag-
ization < S >, which is the excess of one orientation over the other orientation, also
alled dipole moment, and (2) the quadrupole moment Q, which is a linear function of
average of squared magnetization < S? >, written as

The spin-1 Ising model Hamiltonian with nearest-neighbour exchange interactions,
both bilinear and biquadratic, and with a crystal-field interaction is known as the Blume-
Emery-Griffiths (BEG) model. It was introduced by Blume, Emery and Griffiths [1] to
study phase separation and superfluid ordering in He3 — He* mixtures. With vanishing
biquadratic exchange interactions the model is called the Blume-Capel model [2]. The
model was subsequently reinterpreted to describe phase transitions in simple and mul-
ticomponent fluids [3]. Tt has become very attractive because of its simplicity and ri
fixed-point structure. The model has been studied by the mean-field approximation [1- The order parameters can be expressed. in terms of the internal variables and are
high-and low-temperature series expansions [4], the constant coupling approximation [ iven by ‘

Q=3<58%> -2 (2)
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S=< 8> = X; - X,
QE<Q>:X1—2X2+X3. (3)

Using Egs. (1) and (3), the internal variables can be expressed as linear combin,.
tions of the order parameters

= 4+ =54+>

X1 =g +55+ .0
3 |

Xz=§(1—Q) @
1 1 1

Ko =3755+5¢

The Hamiltonian of the spin-1 Ising model with bilinear and biquadratic exchange
interactions for magnetic fields due to the dipole and quadrupole moments is

GH =~ 3 (JSiSj + KQiQj) — Y (HsSi+ HoQu), )
<z3> [

where J is the exchange coupling and K is the quadrupole coupling. We have introduced
coupling parameters J and K that depend on the temperature J => J/kT and K =5
K/kT, where T is the absolute temperature and % is the Boltzmann factor and g =
1/kT. Hg is the magnetic field which corresponds to S and Hy is the field corresponding
to Q.

Besides the spin interpretation, one can also use a description in terms of the
lattice gas, introducing both vacant and occupied sites. Particles in the occupied site can
have two internal states, say orientations corresponding to spin values of plus and minus
one, and the spin value zero corresponds to vacant sites. Furthermore, K is related to
the inteparticle interaction which is independent of the relative orientation and J is the
orientation-dependent part of the coupling.

3. Solutions for the system at equilibrium

The equilibrium properties of the system are determined by means of the lowest
approximation of the cluster variation method [19]. The method consists of the following
three steps:

(1) consider a collection of weakly interacting systems and define the internal
variables; :

(2) obtain the weight factor W in terms of the internal variables;

(3) find the free energy expression and minimize it. The internal variables Xy, X3
and X3 have been defined in section 2. The weight factor W can be expressed in terms
of the internal variables as '
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N1
R (6)

(&)

i=1

W =

Where N is the number of lattice points. A simple expression for the internal energy of
such a system is found by working out Eq. (5) in the lowest approximation of the cluster
variation method. This leads to:

pE _

1ros 1o
N —§JS ~~2-KQ -—Hss——HQQ (7a,)

Substituting Eq. (4) into Eq. (7a), the internal energy can be written as

BE 1 1
W == —EJ(Xl —_ X3)2 - §K(X1 - 2X2 +X3)2

— Hg(X1 —X3) — Ho(X1 — 2X; + X3) (7b)

The entropy S and the free energy F are given by

S=klnW and F=FE-TS. (8)

Using Eqgs. (5)-(8) and making use of the Stirling approximation, the free energy
F can now be written as

o1

1
+ iK(Xl —2X5 + X3)? + Hg(Xy — X3) + Hg(X1 — 2X; + X3) (9)

3 3
Yo Xi(lnX; — 1) + AA(1 - > X,)
i=1 =1

where ) is introduced to maintain the normalization condition. The first four terms of
Eq. (9) are the internal energy of system and the fifth term gives the entropy of the
ystem in this approximation.

The minimization of Eq. (9) with respect to X; gives

0

ox, =0 (=123 (10)
Using Egs. (1), (9) and (10), the internal variables are found to be
e
Xi = '_Za
2 (1)
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where

‘“\\\:Q\?\ ‘I
8 OE : os|  *
eizexp(—ﬁa—Xi) and Z:Zei (i=1,2,3). ) (SQ:
) i=1 }Sch g \S ATqe
7 represents the partition function, e, ez and es are calculated using Eq. (7) as follows: i &l os Y
S, 0.9 ) s,
T T \1‘3 -1 S T T
ey = exp(JS+KQ+ Hs+ Hg) 2 wr 6 0 2 gt 6
e = exp|-2(KQ + Ho)| (12 . b c

5 = eXp(— JS+KQ—Hs+ HQ) Figure 1. Thermal variations of order parameters S and Q as a function of the reduced
’temperatgre. Subscript 1 indicates the stable solutions (drawn lines), 2 the metastable solutions
(dashed lines) and 3 the unstable solutions (dotted lines). Tqc is the quasicritical temperature
) a=15 H, =01, Hp =01;b) a = 3.0, Hs = 0.1, H .
: , He ; .0, = 0.1, = 0.1; =T. =
o Q c) a =75 Hg =01,
From Figure 1, one can see that for small values of @, keeping Hg and Hg
nstants, the stable solutions of S and Q become zero more rapidly above the quasicritical
temperature, T'qc, and the metastable and unstable solutions occur at the low reduced
(13) ’ ;ténlllperatures. Therefore, if one wants to obtain metastable and unstable solutions at

~ h1gHtenili>leratEcures, he has to take big values of . For big values of Hg and small values
’: @, the Tqc oceurs at low temperatures, that means one cannot obtain metastable
gnd unstable solutions at the high temperatures, seen in Figure 2a.

One can easily find the following set of self-consistent equations by using Egs. (3), (11)
and (12):

28inh(aKS + Hs)
exp[—3(KQ + Hg)] + 2Cosh(aK S + Hs)’
_ Cosh(aKS + Hs) — exp[—3(KQ + Hg))
@= Cosh(aKS + Hg) +1/2exp[—3(KQ + Hg)]

where a = J/K is called the ratio of the coupling constants or the relative energy
barrier. These two nonlinear algebraic equations are solved by using the Newton-Raphson
method. Thermal variations of the order parameters S and @ for various values as a
Hs and Hg are plotted in Figures 1-2. Besides the stable solutions, the metastable
and unstable solutions, which are very important for many experimental and theoretica
works, such as metallic glasses, binary alloys, superfluids, superconductors, gels, lasers
magnetic systems, astrophysics, glasses and crystalline ceramics, etc. [20], are also found.
Tn these figures, subscript 1 indicates the stable solutions (drawn lines), 2 the metastable :
solutions (dashed lines) and 3 the unstable solutions (dotted lines). It can be seen from the
figures that below a cretain reduced temperature two more solutions, namely metastabl
and unstable solutions of S and Q exist. This temperature is called the quasicritica,
temperature, Tqc. The discussion of these solutions will be given in the last section.

4. Results and Discussions gure 2. Same as Figure 1, but a) a = 7.5, Hs = 0.7, Hg = 0.1; b) a = 7.5, Hs = 0.1
. = 07, C) o = 75, HS = 07, HQ ] 07/ ?

Thermal variations of stable, metastable and unstable solutions of the order pa
rameters S and Q. as a function of reduced temperature for various value of a, Hg an

Hg are shown in Figures 1-2.

, On the other hand, if values of Hg and Hg are vice versa, Tqc occurs at high
emperatures, shown in Figure 2b. Moreover, Figure 1a and Figure 2c illustrate that tie
tastable and unstable solution can be found at the high reduced temperature for small
ues of Hg = Hq than big values of Hg = Hy,. )

Finally, in order to see that these three solutions and their classifications are
rect, the free energy surfaces are displayed by means of the contour mapping in the
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two dimensional phase space of S and Q. Figure 3 illustrates the free energy surface iy
the form of the contour mapping for o = 7.5, Hs = Hg = 0.1, kT = 3.5. an<.:l N = 1000,
In the contour mapping, the open circle corresponds to the stable which is the IQWest
values of free energy, the closed square corresponds to the metastable solut1on§ which ig
the second lowest value of free energy and the closed circle is the u.nstable solution which
is a higher value of free energy. If one compares Figure 1.c with 'Flg.;ure 3 at kT = 3.5, it
is easily seen that stable, metastable and unstable solutions coincide exactly with each

other in both methods of the calculation.

1

-1

0 Q 1

Figure 3. Contour mapping of the free energy surfaces for @ = 7.5, Hs = Ho = 0.1,kT = 3.5

and N = 1000. The open circle corresponds to the stable solution, the closed square to the -

metastable solution, and the closed circle is the unstable solution
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