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Background

Love waves are traditionally preferred in liquid
sensing applications due to the direction of sur-
face motion as shown in Figure 1.
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Figure 1: Transverse particle motion in Love waves

[1].

Currently, Love wave resonators are exploited
in deeptech applications such as particle sepa-
ration, filtering, wave steering, acoustofluidics,
lab-on-chip applications, and alike |2, 3.
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Figure 2: Possible wave guiding applications [4]

Such advancements require materials research in
sensor design for performance enhancement by
means of novel materials such as auxetic meta-
materials, phononic crystals, etc. |5, 6].

Figure 3: Magnified view of the grid like substruc-
tures obtained by 2pp |7]

Based on the results presented in this poster,
we intend to extend our work by implementing
the Floquet-Bloch theorem to characterize the
acoustical properties of auxetic metamaterials
produced by 2pp printing.

Modeling

We start by writing the weak form of the me-
chanical and electrical balance principles com-
bined into the single equation
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where displacement, u, and electric potential, ¢,

are simulated by using the material parameters
C', e, €. Strain, S, and electric field, E, are the
usual kinematic variables.

Using linear material properties allows the use
of a Bernoulli separation ansatz on the unknown
fields as follows:

u;(z,t) = uj(z) exp(—iwt) ,
p(z,t) = ¢(z) exp(—iwt) ,

where w is the harmonic excitation speed. In
this manner, rate terms are rewritten, u; =

—w?u;. The fields are approximated by using

shape functions, /V; and IV, as vector and scalar
depending only on space,
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As we sum up over elements, denoted by > _,

and obtain w and q5 as arrays of the nodal val-
ues within the computational domain, the first
expression within the integrand in Eq. 1 is as-
sembled as the mass matrix,

Ky, 0= /Q ;i Cijp1 Sy AV

K, - qAb = — Z /Q 0Uj ;e L AV

Ky, -u= Z /Q 09 i€ik1 Sk dV (2)
Ky ¢ = Z /Q 00 icik b dV

—w'M -4 = — ZwZ/ pouiu; dV
e (2

References

UPPSALA YEDITEPE UNIVERSITY
UNIVERSITET

Eigenvalue Analysis

By observing Eq. 233, we realize that Ky, 1s
the transpose of K, 4. Now, we rewrite in the
matrix form

0 4
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0
Solving for ¢ from the second line of Eq.3 and
substituting into the first line we get:

(Kyw — Kup - K, - Ky —w’M)-4=0.

The condensed stifiness matrix,
* —1 T
K :Kuu—Ku¢-K¢¢ Ko
enables to rewrite
(K* —w*M)a =0 .

The implementation of the model and compu-
tations presented in the section below are per-
formed in the open-source finite-element analy-
sis platform Fenics [§].

Simulations

Relevant Love modes were obtained for models
having various relative layer thickness values.
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Figure 4: Simulation of the captured Love mode

(top), dispersion of wave speed with relative layer
thickness (bottom)
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