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Abstract

Changes in the mechanical properties of arteries due to growth, remodel-

ing, or aging are related with cardiovascular diseases. These changes can

quantitatively be assessed if a suitable set of biomaterial constitutive param-

eters could be fitted onto the in vitro response from pressure myography.

In Simon et al (1970), a pressure-diameter dataset reflecting the internal

pressurization stage was provided. However, this data did not include the

excised state. We developed an analytical continuum-based computational

procedure to pull the current state back to the excised (reference) state. Us-

ing this procedure the data was fitted to a simple exponential model, and a

56% decrease in the shear modulus and a 19% decrease in the exponential

constant were observed. Similar observations were made for the hyperelastic

fibre-reinforced continuum model by Holzapfel et al (2000). In conclusion,

the parameter identification process may be hindered as a result of an in-

complete or partial dataset. Inverse deformation mapping may be used to

produce the missing data.
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1. Introduction1

Cardiovascular diseases are directly related to changes in the mechanical2

properties of arteries due to growth, remodeling, or aging. (s. Roy, 1881;3

Heagerty et al., 1993; Hayashi, 1993; Sell and Monnier, 2012; Mitchell et al.,4

2007; Lakatta et al., 2009; Lee and Oh, 2010; Leblanc et al., 2018; Ungvari5

et al., 2018). These changes can quantitatively be assessed through the pa-6

rameters of a suitable biomaterial constitutive model (see Mackerle (2005)7

and Wex et al. (2015) for comprehensive reviews on the subject) if they can8

be fitted onto in-vitro/in vivo response data. Among various experimental9

methods, pressure myography stands out as a practical and economical tech-10

nique to measure the pressure-diameter response of arterial vessels subjected11

to internal pressure in ex vivo. Although there are many references that pro-12

vide pressure-diameter data from pressure myography (s. Roy, 1881; Simon13

et al., 1971; Cheung and Hsiao, 1972; Vaishnav et al., 1973; Hayashi et al.,14

1974; Kas’yanov, 1974; Taira et al., 1974; Young et al., 1977; Fung et al.,15

1979; Vito and Hickey, 1980; Dobrin, 1984; Zulliger et al., 2004; Kang, 2008;16

Avril et al., 2010; Sleboda and Roberts, 2017; Ramachandra and Humphrey,17

2019), it is not straightforward to compare their results due to difficulties18

arising from the differences in measurement units, test protocols, and even19

constitutive models.20

We quote from Myneni and Rajagopal (2022) “... we should look to de-21
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veloping a sufficiently simple model that has some predictive capability, even22

if it is not faithful to the details of the tissue structure.” In their two papers23

Simon et al. (1971, 1972) first presented the pressure-diameter response of24

a canine aortic artery, and then used this data to fit the parameters of a25

constitutive model that is sufficiently simple, as mentioned in Myneni and26

Rajagopal (2022).27

Inverse elasticity provides a multi-faceted range of applications from es-28

timating material parameters (Simon et al., 1971; Cheung and Hsiao, 1972;29

Demiray, 1972; Vaishnav et al., 1973; Mirsky, 1973; Hayashi et al., 1974;30

Kas’yanov, 1974; Young et al., 1977; Chuong and Fung, 1983; Wu et al.,31

1984; Chuong and Fung, 1986; Ogden et al., 2004; Holzapfel et al., 2004;32

Zulliger et al., 2004; Einstein et al., 2005; Wicker et al., 2008; Avril et al.,33

2010; Garcia-Gonzalez et al., 2018; Huh et al., 2019), to recovery of initial34

(residual) stress distribution and beyond. Inverse deformation analysis ben-35

efits from mathematical optimization tools to recover an unknown state of36

the body, based on a known configuration (Genovese, 2007, 2009; Avril et al.,37

2010; Morin and Avril, 2015; Mazier et al., 2022), while Avril et al. (2010)38

used full field optical measurements of human arteries in-vitro for parameter39

estimation.40

Estimating biological constitutive parameters from experimental data41

may prove to be a rather challenging optimization problem due to the pres-42

ence of material and configuration related non-linearities and unknowns. The43

most simplistic passive constitutive models have been proposed as a function44

of the first invariant of the right Cauchy deformation tensor, C1 in their hy-45

perelastic isotropic strain energy functionals, for example in Demiray (1972)46
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and Simon et al. (1972). On the other hand, more sophisticated constitutive47

models have recently appeared, such as the micro-mechanically based theory48

proposed in Holzapfel et al. (2000). However, the price of using such highly49

sophisticated constitutive models is increased complexity in the parameter50

estimation procedure, and a high likelihood of ending up with an overfitting51

problem.52

We first derive in section 2.1, a continuum mechanics based pressure-53

diameter expression of an axisymmetrically extending inflating vessel geom-54

etry based on the micro-mechanically based constitutive model. Then, we55

describe in section 2.2, the procedure for estimating model parameters from56

experimental data by using an optimization function. The recovery of the ex-57

cised (undeformed) configuration using the pull-back operation is explained58

in section 2.3. As a result, we hypothesize that the potential difficulty59

posed by the variation in measurements or lack of data pertaining60

to the undeformed state which might lead to inaccurate parameter61

estimates can be averted by incorporating the pull-back operation62

a priori into the deformation cycle in the optimization routine.63

2. Theory and Methods64

As put forth in the beginning of the prior section, there is a need for

a good but sufficiently simple model description of the arterial constitutive

making. The following relation was proposed by Simon et al. (1971) and

Demiray (1972), independently but around the same time

∂Ws

∂I
= A ek(I−3) (1)
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where ∂Ws/∂I represents a mechanical property analogous to the shear mod-

ulus in the undeformed (natural) configuration. In case, the reference config-

uration is different from the undeformed configuration, the constant 3 in Eq.

1 may be replaced by I0, the value taken by the invariant I in the new ref-

erence configuration. The rationale for modifying the SED function in such

a way is due to the fact that the pressure-diameter data is recorded in the

tethered configuration, which is obviously not the undeformed configuration.

Indeed, in the tethered configuration, the vessel has been extended by an

axial stretch of λ, and I0 = λ2 + 2/λ. We note here that, in Simon et al.

(1972), such a modified SED function as described above has been utilized,

and Eq.1 has been replaced by

∂Ws′

∂I
= A ek(I−I0) (2)

This relation is directly utilized in the general form of the Cauchy stress

components for an incompressible isotropic material for which the SED is

only a function of the first invariant I of C, which reads

σrr = −p+ 2
∂Ws

∂I
λ2
r, σθθ = −p+ 2

∂Ws

∂I
λ2
θ (3)

where λr and λθ correspond to the principal stretches in the radial and cir-65

cumferential directions, respectively (Holzapfel, 2000; Nair, 2009).66

2.1. Continuum-based axisymmetric stress-stretch relations67

Let B0 denote the excised (E) configuration of the vessel body in which a68

stress-free condition is assumed to prevail. Although the vessel axis may have69
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a slight curvature, we assume that it can be straightened with a negligible70

tethering load applied from its two ends. Thus, it becomes convenient to71

introduce a cylindrical coordinate system and mark the coordinates of a72

material point X as X = ReR + ZeZ , where er and ez denote the unit73

vectors in the radial and axial directions Irgens (2008). The inner and outer74

radii in this configuration are labeled as A and B, respectively.75

In pressure-myography experiments the excised vessel is positioned be-76

tween pressurization canulae and tethered by a certain amount of axial77

stretch, λz. In this intermediate configuration, BT , let the gauge section78

be defined as the portion of the vessel far enough from the canulae ends such79

that the strain distribution along the vessel axis is uniform. The material80

point X is now at x̄, and the inner and outer radii are, ā, and b̄, respectively.81

In this and other configurations all relevant elastic fields in the gauge section82

will be taken as independent of the axial (Z) coordinate.83

The final (inflated) configuration, BI , is obtained by filling the canulae84

with a fluid at pressure pi, which produces uniform inflation of the gauge85

section. Here the inner and outer radii become a and b, respectively, in86

compliance with the customary representation of the deformed configuration87

variables. The material point X is now at the location x = rer + zez, where88

r = r(R) and z = λz Z are the deformed coordinates.89

An exact expression of the deformed radius can be obtained by virtue of

the incompressibility of material, that reads

r2 = a2 + λ−1
z (R2 − A2) (4)

This can be used as an exact solution of the radial deformation provided90
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that the deformed inner radius, a is determined from equilibrium equations91

in section 2.2.92

The role of fibers and the anisotropy induced by them in a micro-mechanically

based model is expressed elegantly by the formulation in Holzapfel et al.

(2000). It is assumed that at least two fiber families exist symmetrically

oriented at angles ±ϕ from the circumferential direction, the unit vectors of

which are M and M ′ as shown in Figure 4. The constituent ground and

fiber phases are additively decomposed in terms of the corresponding SED

expressions

Wm = (1− 2α)Wg + αWf + αWf ′ (5)

where prime indicates the corresponding fiber family. The ground substance

was simply modeled as a neo-Hookean material as

Wg =
µ

2
(I1 − 3) (6)

where µ represents the shear modulus, while the constitutive model of the

fiber phase is defined as

Wf =
k1
2k2

{
ek2(I4−1)2 − 1

}
(7)

where k1 has units of force per area and k2 has no units.93

2.2. Parameter estimation procedure based on inverse elasticity94

An exact solution of the deformed internal radius, (a in Eq. 4) is required95

in an inverse elasticity framework set up to determine it’s value in the unde-96

formed state, A, and then fit the SED function parameters corresponding to97
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the simple (Eq.1 for A and k) and the micro-mechanically based (Eq.5 for µ,98

k1, and k2) models, consecutively.99

The derivation of the analytical form is only shown for the micro-mechanically

based SED function, for which the Cauchy stress components are

σrr = (1− 2α)(−p+ µλ2
r)

σθθ = (1− 2α)(−p+ µλ2
θ) + 2αβθλ

2
θ (8)

where βθ = 2k1(I4 − 1)ek2(I4−1)2 cos2 ϕ. Cauchy’s equation of motion in the

radial direction reads
∂σrr

∂r
+

1

r
(σrr − σθθ) = 0 (9)

Applying the chain rule to write the derivative in terms of R and substitu-

tion of the stress components σrr and σθθ from Eq. 8, the above equation

reduces to a first order ordinary differential equation of the hydrostatic pres-

sure reading

dp

dR
=

λr

r

[
µ(λ2

r − λ2
θ)−

2αβθ

1− 2α
λ2
θ

]
+ µ

d(λ2
r)

dR
(10)

Upon integrating Eq. 10 from the inner wall R = A to an arbitrary radial

location R, we get

p(R) =

∫ R

A

λr

r

[
µ(λ2

r − λ2
θ)−

2αβθ

1− 2α
λ2
θ

]
dR + µ

(
λ2
r − λ2

r

∣∣
A

)
+ p(A) (11)

The integration constant p(A) is evaluated by using the traction boundary
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condition at the inner wall σrr

∣∣
R=A

= −pi as

p(A) = µλ2
r

∣∣
A
+

pi
1− 2α

(12)

Finally, the other traction-free boundary condition at the outer wall σrr

∣∣
R=B

=

0 results in an integral equation

F (µ, k1, k2; a) =

∫ B

A

λr

r

[
(1− 2α)µ(λ2

r − λ2
θ)− 2αβθ λ

2
θ

]
dR + pi = 0 (13)

which we be solved for a. The parameter estimation procedure outlined100

in Algorithm 1 uses this equation to solve for the inner radii {anj } at the101

nth iteration corresponding to the internal pressures pExpi,j observed in the102

experiment for N data points.103

A nonlinear algebraic solver in Octave Eaton (2022) (fsolve) is utilized104

for this purpose. The search for the best parameters is performed by using105

the lsqnonlin function in Octave. Numerical quadrature was employed in106

evaluating the functional F .107

The parameter estimation procedure shown in Algorithm 1 can be applied108

to experimental data if the tensile response data is available. If it is missing109

or incomplete we propose a way to recover the missing part based on the110

existing data in the next section.111

2.3. Inverse deformation based configuration recovery112

In vitro pressure-diameter data are seldom provided in the literature. As113

a consequence, the fitting process may be greatly hindered. We propose114

to circumvent this difficulty by applying an inverse kinematic “pull-back”115
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Algorithm 1: The parameter estimation procedure.

Data: {bExpj , pExpi,j } for j = 1, . . . , N

Fixed: {α, ϕ};
Variables: x = {µ, k1, k2};
Take an initial guess, x← x0;
while residual > tolerance:

Solve Eq.13 for {anj ∀ p
Exp
i,j };

Evaluate {bnj } using Eq.4;

residual =
√∑N

j=1(b
n
j − bExpj )2;

x← xn;

end

operation to the tethered state, which shall result in the recovery of the116

excised state.117

To this end, Algorithm 1 was modified to include the pull-back of BT ,118

the tethered state back to B, the excised (undeformed) state (see Algorithm119

2). The pull-back operation simply relies on the equality dX = F̄−1dx̄, and120

the entire procedure is illustrated in Figure 2.121

3. Results122

The material parameters were estimated using the lsqnonlin function123

found in the optim Till (2022) package in Octave Eaton (2022) so that the124

load-displacement curves fitted onto the experimental data points with con-125

siderably high coefficients of determination (R2 > 0.99) as shown in Table 1126

and Figure 3. It can be seen that using Path-1 and thus not accounting for127

prior tensile stretching (in the tethered state) results in a much higher stiff-128

ness coefficient in comparison with Path-2 where pull-back is used to recover129

the undeformed state.130
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Algorithm 2: The parameter estimation algorithm including the
pull-back operation

Data: {bExpj , pExpi,j } for j = 1, . . . , N

Fixed: {α, ϕ};
Variables: x = {µ, k1, k2};
Take an initial guess, x← x0;
Take an initial guess, A← A0;
while residual > tolerance:

pull-back to recover An, calculate Bn;
A← An;

Solve Eq.13 for {anj ∀ p
Exp
i,j };

Evaluate {bnj } using Eq.4;

residual =
√∑N

j=1(b
n
j − bExpj )2;

x← xn;

end

Table 1: Material parameter estimates from the simulation pair (utilizing the direct and
pull-back paths) as well as the reported values in Simon (1972).

Process A k R2

(kPa)
Simon et al. 9.9 2.1 0.9836
Path-1 12.4 1.78 0.9907
Path-2 4.4 1.71 0.9906
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Table 2: Comparison of measured and simulated (Path-2) outer radii. ∗ from the value
provided in the Conclusion of Simon et al. (1971). ∗∗ Computed.

Configuration Outer radius (mm)
Experimental Computed

Excised 3.90∗ 3.91∗∗

Tethered 3.16 3.16
Inflated 5.30 5.32

Table 3: Parameters obtained from data fitting.

ϕ µ k1 k2 R2

(kPa) (kPa)
π/6 14.7 79.2 0.884 0.992
π/4 31.4 38.6 2.49 0.991
π/3 34.2 1.68 4.24 0.991

The excised (undeformed) geometry estimate by using the pull-back agreed131

with the excised state mentioned in Simon et al. (1971), as shown in Table132

2.133

The response curves obtained from different material parameter sets using134

the simple material model are presented in Figure 3. Alternatively, parameter135

fits of the micro mechanically based material model by Holzapfel et al. (2000)136

are shown in 4. In the latter model, three fiber angle orientations were tried137

(ϕ = π/3, π/4, π/6). The resulting parameter sets are shown in Table 3.138

For further examination of the effect of the fiber angle on the constitu-139

tive parameters, the Finite Element Analysis Program (FEAP) Taylor and140

Govindjee (2020) was used to simulate the mechanical behavior of an arte-141

rial segment geometry estimated by the pull-back algorithm. Three models142

corresponding to different fiber orientations (π/3, π/4, π/6) having different143
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(undeformed) geometries were set up. Loading was incrementally applied in144

two stages, tethering (extension ratio λz = 1.53) and inflation (pmax
i = 26.6145

kPa) as shown in Figure 5.146

The change in wall thickness between loading states, especially the re-147

duction in thickness during the inflation process can be visually recognised148

from the meshes, as well as seen by looking at the nodal displacement values149

in Figure 6. A high correlation between the finite element and analytical150

results was observed.151

By virtue of the finite element model, extraction of other variables of in-152

terest such as the tethering reaction force and the accumulated strain energy153

was possible. The reaction force in Figure 7a and the total strain energy in154

Figure 7b are plotted on the vertical axis, as a function of loading along the155

horizontal axis.156

4. Discussion157

The mechanical changes of artery wall is directly related to the cardiovas-158

cular diseases which are estimated to end over 17.9 million lives each year and159

the leading cause of death globally (WHO, https://www.who.int/en/news-160

room/fact-sheets/detail/cardiovascular-diseases). Constitutive model based161

interpretation in normal physiology and psychophysiology is an important162

tool to determine the mechanical characteristics of arteries which cannot163

be measured in in vivo. Constitutive models can generate direct mecha-164

nistic and quantitative link between arterial properties which effect clinical165

stiffness measures. In addition, determination of constitutive model parame-166

ters can contribute to the detection of cardiovascular diseases at early stage.167
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Therefore, the correct estimation and reproduciblity of material parameters168

based on constitutive models might have critical importance to define clinical169

reference values for normal and disease state.170

In this study, the proposed identification algorithm with pull-back (Alg.171

2) is proved to characterise the material properties of an arterial segment172

with a proper micromechanical model. This algorithm also has the ability173

to make an accurate guess of the unknown excised radii. We showed that174

the recovered outer radius of the artery in the excised state agrees very well175

with the value reported in Simon et al. (1971) (see Table 2). In addition,176

the material parameters of an arterial segment were extracted with the novel177

identification algorithm proposed, which used genetic algorithm to produce178

initial guesses for the nonlinear least squares algorithm. This two step pro-179

cedure mitigated the overfitting and converged to physiologically sensible180

parameters with a high coefficient of determination above 0.99. In addition,181

using Path-1 resulted in a much higher stiffness coefficient in comparison182

with Path-2 where pull-back was used to recover the undeformed state.183

The assumption of three different fiber angle orientations ( ϕ =π/3, π/4184

, π/6) demonstrated a proportional relation between the ϕ, and the matrix185

material stiffness, µ (Table 3). Conversely, the infinitesimal elastic coefficient186

of the fibers, k1, changed inversely proportional with ϕ. It could be argued187

that increasing the stiffness of ground substance tolerates the insufficiency188

of axially leaned fibers to carry radial pressure loads. It can also be deduced189

that the exponential stiffening parameter of the fibers, k2, also increases with190

ϕ in order to resist shape change at elevated inflation pressures. A decrement191

in fiber stiffness is expected for the fiber angles that are closer to the axial192
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direction, to allow for the axial stretching.193

Furthermore, the agreement between the computational and analytical194

solution approved the validity of our identification algorithm with pull-back.195

The cylinder with a smaller fiber angle appeared to have the smallest un-196

deformed radii among the rest, which meant that it had the smallest radial197

deformation during the tethering stage. The largest undeformed radii oc-198

curred for ϕ= π/4, which deformed more than the others during tethering.199

The axial force generated during inflation was shown to vary as a function200

of the fiber orientation, where larger fiber angles resulted in higher tether-201

ing reactions, thus pointing to higher axial stiffness. In contrast, fibers which202

leaned tangentially showed much less resistance to axial stretching. This out-203

come might be insightful where the axial reaction force of an artery cannot204

be measured directly.205

In fitting the material parameters of an artery from a pressure myogr-206

pahy experiment there are certain difficulties and limitations that need to207

be addressed. The most important difficulties were found to be the lack of208

experimental data such as the tethering force, lack of measurement of the un-209

deformed geometry, high variability (standard deviation) among independent210

experimental measurements, the geometric non-uniformity of the vessels in211

contrast with the analytical models. As a result, a high potential of overfit-212

ting naturally arises in the material parameter fitting procedure. Thus, our213

procedure might serve to predict consistent material parameters that can be214

reproduced from various pressure myography experiments.215
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Figure 1: The three standard specimen configurations in a pressure-myography experi-
ment. From left to right, excised (E), tethered between canulae (T), and inflated (I)
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Figure 2: The parameter estimation procedure to obtain the least-square fit parameter
values, including the pull-back operation
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Figure 3: Mechanical response curves obtained using different procedures

Figure 4: Material parameter fits for ϕ = {π/6, π/4, π/3}
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Figure 5: Depiction of the finite element artery slice model and its deformed states resulting
from the applied loading (top left)

Figure 6: Deformation mapping from reference configuration to the deformed.
The mapping is shown at three states (loadsteps): excised (loadstep zero) in middle,
tethered (loadstep one) on left, inflated (loadstep two) on right. Red, blue and green lines
represent the models with ϕ = π/6, ϕ = π/4 and ϕ = π/3, respectively. Lines are from
the analytical model whereas points are from the finite element analysis

(a) (b)

Figure 7: The changes in the tethering reaction force (a) and total strain energy (b) in
the model as a function of load increments.
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Figure Captions

1. The three standard specimen configurations in a pressure-myography

experiment. From left to right, excised (E), tethered between canulae

(T), and inflated (I)

2. The parameter estimation procedure to obtain the least-square fit pa-

rameter values, including the pull-back operation

3. Mechanical response curves obtained using different procedures.

4. Material parameter fits for ϕ = {π/6, π/4, π/3}

5. Depiction of the finite element artery slice model and its deformed

states resulting from the applied loading (top left)

6. The mapping is shown at three states (loadsteps): excised (loadstep

zero) in middle,

tethered (loadstep one) on left, inflated (loadstep two) on right. Red,

blue and green lines represent the models with ϕ = π/6, ϕ = π/4 and

ϕ = π/3, respectively. Lines are from the analytical model whereas

points are from the finite element analysis

7. The changes in the tethering reaction force (a) and total strain energy

in the model as a function of load increments.
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