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June 2022

We certify that we have read this dissertation and that in our opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of Doctor of

Philosophy.
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Süleyman Serdar Kozat

Selim Aksoy

Mehmet Kemal Leblebicioğlu
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ABSTRACT

CONTROL AND SYSTEM IDENTIFICATION OF
LEGGED LOCOMOTION WITH RECURRENT

NEURAL NETWORKS

Bahadır Çatalbaş

Ph.D. in Electrical and Electronics Engineering

Advisor: Ömer Morgül

June 2022

In recent years, robotic systems have gained massive popularity in the industry,

military, and daily use for various purposes, thanks to advancements in artificial

intelligence and control theory. As an exciting sub-branch of robotics with their

differences and opportunities, legged robots have the potential to diversify and

spread the use of robotic systems to new fields. Especially, legged locomotion

is a desirable ability for mechanical systems where agile mobility and a wide

range of motions are required to fulfill the designated task. On the other hand,

unlike wheeled robots, legged robot platforms have a hybrid dynamical structure

consisting of the flight and contact phases of the legs. Since the hybrid dynamical

structure and nonlinear dynamics in the robot model make it challenging to apply

control and perform system identification for them, various methods are proposed

to solve these problems in the literature. This thesis focuses on developing new

neural network-based techniques to apply control and system identification to

legged locomotion so that robotic platforms can be designed to move efficiently

as animal counterparts do in nature.

In the first part of this thesis, we present our works on neural network-based

controller development and evaluation studies for bipedal locomotion. In detail,

neural controllers, in which long short-term memory (LSTM) type of neuron mod-

els are employed at recurrent layers, are utilized in the feedback and feedforward

paths. Supervised learning data sets are produced using a biped robot platform

controlled by a central pattern generator to train these neural networks. Then,

the ability of the neural networks to perform stable gait by controlling the robot

platform is assessed under various ground conditions in the simulation environ-

ment. After that, the stable walking generation capacity of the neural networks

and the central pattern generators are compared with each other. It is shown that

the proposed neural networks are more successful gait controllers than the central

pattern generator, which is employed to generate data sets used in training.
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In the second part, we present our studies on the end-to-end usage of neural

networks in system identification for bipedal locomotion. To this end, supervised

learning data sets are produced using a biped robot model controlled by a central

pattern generator. After that, neural networks are trained under series-parallel

and parallel system identification schemes to approximate the input-output re-

lations of the biped robot model. In detail, different neural models and neural

network architectures are trained and tested in an end-to-end manner. Among

neuron models, LeakyReLU and LSTM are found as the most suitable feedforward

and recurrent neuron types for system identification, respectively. Moreover, neu-

ral network architecture consisting of recurrent and feedforward layers is found

to be efficient in terms of learnable parameter numbers for system identification

of the biped robot model.

The last part discusses the results obtained in the control and system iden-

tification studies using neural networks. In the light of acquired results, neural

networks with recurrent layers can apply control and systems identification in an

end-to-end manner. Finally, the thesis is completed by discussing possible future

research directions with the obtained results.

Keywords: Robot Locomotion Control, Legged Locomotion, Biped Robot, Sys-

tem Identification, Central Pattern Generator, Machine Learning, Deep Learning,

Recurrent Neural Networks, Long Short-Term Memory.



ÖZET

TEKRARLAYAN SİNİR AĞLARI İLE BACAKLI
LOKOMOSYONUN KONTROLÜ VE SİSTEM

TANIMLANMASI

Bahadır Çatalbaş

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Danışmanı: Ömer Morgül

Haziran 2022

Son yıllarda, yapay zeka ve kontrol teorisindeki gelişmeler sayesinde robotik

sistemler endüstride, askeriyede ve çeşitli amaçlarla günlük kullanımda büyük bir

popülerlik kazanmıştır. Farklılıkları ve fırsatlarıyla robotiğin heyecan verici bir

alt dalı olan bacaklı robotlar, robotik sistemlerin kullanımını çeşitlendirme ve yeni

alanlara yayma potansiyeline sahiptir. Özellikle bacaklı hareket, belirlenen görevi

yerine getirmek için çevik hareketliliğin ve geniş bir hareket yelpazesinin gerekli

olduğu mekanik sistemler için arzu edilen bir yetenektir. Öte yandan, tekerlekli

robotlardan farklı olarak bacaklı robot platformları, bacakların uçuş ve temas

aşamalarından oluşan hibrit dinamik bir yapıya sahiptir. Robot modelindeki

hibrit dinamik yapı ve doğrusal olmayan dinamikler, onlar için kontrol uygulamayı

ve sistem tanımlamayı yapmayı zorlaştırdığından, literatürde bu problemlerin

çözümü için çeşitli yöntemler önerilmiştir. Bu tez, robotik platformların doğada

hayvan benzerlerinin yaptığı gibi verimli hareket edecek şekilde tasarlanabilmesi

için bacaklı harekete kontrol ve sistem tanımlaması uygulamak için yeni sinir ağı

tabanlı teknikler geliştirmeye odaklanmaktadır.

Bu tezin ilk bölümünde, iki ayaklı hareket için sinir ağı tabanlı denet-

leyici geliştirme ve değerlendirme çalışmalarımızı sunuyoruz. Ayrıntılı olarak,

tekrarlayan katmanlarda uzun kısa süreli bellek (LSTM) tipi sinir modellerinin

kullanıldığı sinirsel kontrolcüler, geri besleme ve ileri besleme yollarında kul-

lanılmaktadır. Denetimli öğrenme veri kümeleri, bu sinir ağlarını eğitmek için

bir merkezi örüntü üreteci tarafından kontrol edilen iki ayaklı bir robot plat-

formu kullanılarak üretilmektedir. Daha sonra yapay sinir ağlarının robot plat-

formunu kontrol ederek stabil yürüyüş yapabilme kabiliyeti simülasyon ortamında

çeşitli zemin koşulları altında değerlendirilmektedir. Ardından sinir ağlarının

ve merkezi örüntü üreteçlerinin kararlı yürüme üretme kapasitesi birbirleriyle

karşılaştırılmaktadır. Önerilen sinir ağlarının, eğitimde kullanılan veri kümelerini
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oluşturmak için kullanılan merkezi örüntü üretecinden daha başarılı yürüyüş kon-

trolcüleri olduğu gösterilmiştir.

İkinci bölümde, iki ayaklı hareket için sistem tanımlamasında sinir ağlarının

uçtan uca kullanımına yönelik çalışmalarımızı sunuyoruz. Bu amaçla, bir merkezi

örüntü üreteci tarafından kontrol edilen iki ayaklı bir robot modeli kullanılarak

denetimli öğrenme veri setleri üretilir. Bundan sonra, sinir ağları, iki ayaklı robot

modelinin girdi-çıktı ilişkilerini yaklaşık olarak tahmin etmek için seri-paralel ve

paralel sistem tanımlama şemaları altında eğitilmiştir. Ayrıntılı olarak, farklı

sinir modelleri ve sinir ağı mimarileri uçtan uca eğitilip, test edilmektedir. Sinir

modelleri arasında, LeakyReLU ve LSTM, sistem tanımlaması için sırasıyla en

uygun ileri beslemeli ve tekrarlayan nöron türleri olarak bulunmuştur. Ayrıca,

tekrarlayan ve ileri beslemeli katmanlardan oluşan sinir ağı mimarisinin, iki ayaklı

robot modelinin sistem tanımlaması için öğrenilebilir parametre sayısı açısından

verimli olduğu bulunmuştur.

Son bölümde, sinir ağları kullanılarak yapılan kontrol ve sistem tanımlama

çalışmalarında elde edilen sonuçlar tartışılmaktadır. Elde edilen sonuçlar

ışığında, tekrarlayan katmanlara sahip sinir ağları, uçtan uca kontrol ve sistem

tanımlaması uygulayabilmektedir. Son olarak, elde edilen sonuçlarla gelecekteki

olası araştırma yönleri tartışılarak tez tamamlanmaktır.

Anahtar sözcükler : Robot Lokomosyon Kontrolü, Bacaklı Lokomosyon, İki

Ayaklı Robot, Sistem Tanımlama, Merkezi Örüntü Üreteci, Makine Öğrenimi,

Derin Öğrenme, Tekrarlayan Sinir Ağları, Uzun Kısa Süreli Bellek.
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Leblebicioğlu, and Asst. Prof. Dr. İsmail Uyanık for accepting my work and

guiding me up to this point. Without their vision and support, this thesis may

not have ended as it is today.

In addition, I am very thankful to the current and former members of our

research group members Hasan Hamzaçebi, Mustafa Oğuz Yeğin, Ahmet Safa
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Mehmet Bozdemir for supporting me both in professional and social sense.
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layer) are shown with ŷyy[t] and ooo[t]. . . . . . . . . . . . . . . . . . 23

2.6 LSTM neuron model internal structure . . . . . . . . . . . . . . . 24

2.7 Torque control diagram . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Position control diagram with closed-loop PID controller . . . . . 37

2.9 Position control diagram with closed-loop neural network con-

troller that takes the difference between reference and feedback

inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.10 Position control diagram with a closed-loop neural network con-

troller takes the reference and feedback inputs separately. . . . . . 41

xii



LIST OF FIGURES xiii

2.11 Walking success change of selected neural controller on data sets

during training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.12 Calculated torque output difference between CPG and the selected

controller for all patterns in each data set . . . . . . . . . . . . . . 46

2.13 Successful locomotion generation capability of selected controller

and CPG for different ramp angle and speed excitation value com-

binations in the data sets . . . . . . . . . . . . . . . . . . . . . . . 48

2.14 Successful walking percentages of the selected controller and CPG

for different roughness multipliers . . . . . . . . . . . . . . . . . . 50

2.15 Walking success change of selected neural controller on data sets

during training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.16 Calculated limb trajectory difference between CPG controlled

robot model and the selected controller output for all patterns

in each data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.17 Successful locomotion generation capability of selected controller

and CPG for different ramp angle and speed excitation value com-

binations in the data sets . . . . . . . . . . . . . . . . . . . . . . . 55

2.18 Calculated torque output difference between PID and the selected

controller for all patterns in each data set . . . . . . . . . . . . . . 56

2.19 Successful locomotion generation capability of selected controller

and CPG for different ramp angle and speed excitation value com-

binations in the data sets . . . . . . . . . . . . . . . . . . . . . . . 58

2.20 Limit cycle trajectories of CPG and proposed NNBCs driven biped

robot model hip states. Blue and orange lines show (x2, ẋ2) and
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Chapter 1

Introduction

This dissertation first introduces the novel uses of recurrent neural networks as a

controller for the biped robot locomotion in various control diagrams. To this end,

the performances of proposed neural controllers are assessed under the different

ground conditions in the simulation environment. The rest of this dissertation

presents the use of recurrent neural networks in the system identification for

legged locomotion. Finally, we conclude the dissertation by discussing obtained

results and possible future research directions.

This section starts with a summary of related literature on robot locomotion,

control theory, and neural network learning concepts. Moreover, we explain our

motivation for employing recurrent neural networks on the control and system

identification tasks by criticizing the advantages and drawbacks of summarized

methods in the literature. The subsequent section describes the key contributions

of the dissertation using recurrent neural networks on the legged locomotion con-

trol and system identification problem. Finally, we conclude this chapter by

presenting the organization of the dissertation.

1



1.1 Background and Motivation

Nowadays, robotic solutions have gained massive popularity due to the recent

advancements in artificial intelligence and control theory. For this reason, dif-

ferent robotic systems are being developed for various purposes in the industry

and military. Legged robots are an exciting sub-branch of robotics with their

differences and opportunities. Humanoid robot Atlas showed that legged robots

have the capability of agile mobility and wide range of motion with their design

close to the humans [2,3]. Unfortunately, their hybrid dynamical structure, which

is inevitable for legged locomotion, includes nonlinear components that make it

challenging to model and control these platforms, [4, 5]. In the control of single-

legged robots, deadbeat type controllers can be applied by dividing the motion

into phases, see e.g., [6]. Moreover, different control theory techniques such as

proportional-derivative (PD) and model predictive controllers can be used in the

control of biped robots, see e.g., [7]. In addition, different dynamic models have

been developed for the control and identification of legged robots with nonlinear

structures, such as the Spring-Loaded Inverted Pendulum model, see e.g., [8, 9].

The stability of walking behavior is a very complex problem for legged robots

due to their highly nonlinear models. Various methods are available in the litera-

ture to analyze the stability of walking behavior. Among these, Center of Gravity

(COG) method requires that the center of mass of the legged robot be above the

support polygon for the stability of walking behavior, [10]. In the Zero Moment

Point (ZMP) approach, stability is achieved when the projection of the point

where the sum of active forces is equal to zero is over the support polygon, [11].

In addition, Foot Rotation Indicator (FRI) determines stability and level of in-

stability depending on the location of the rotation forces acting on the support

foot at the ground, [12]. A more advanced technique, Centroidal Moment Pivot

(CMP) method, eliminates the single foot limitation of FRI by analyzing stability

depending on the location of the pivot point, which is defined as the point where

a parallel line to reaction force passing through the center of mass of the robot

intersects with the ground, [13]. Unfortunately, these approaches become more

complex when dynamically stable walking with an increasing number of robot
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limbs is desired compared to statically stable motion.

There is also diversity in actuation techniques which affect the whole design of

the legged robot. As an illustration of these, Ankaralı and Saranlı [14] introduce

an energy regulation method via hip torque actuation on a one-legged spring-

mass hopper robot. Kerimoğlu et al. [15] utilize series-elastic ankle actuation

to the compass gait model and analyze the stability of walking behavior for the

resulting system. Spröwitz et al. [16] propose an open-loop motion control for a

quadruped Cheetah robot by utilizing appropriate knee and hip joint actuation.

These varieties of actuation also require different controller design methods. In

addition to the classical controllers, there are also different legged locomotion

control approaches, such as central pattern generators and neural networks.

The inherent nonlinearity and the resulting complexity make it difficult to

utilize exact analytic methods for the analysis and control of legged robots. As

a remedy to this problem, Sproewitz et al. [17] proposed a central pattern gen-

erator (CPG) based controller implementation in multi-legged robotic systems.

Likewise, Crespi and Ijspeert [18] presented a CPG-based control method for a

snake robot with a high degree of freedom. CPGs, which mimic the reflex spring

in the spinal cord, offer a control approach that does not rely on exact solutions

and approximation-based methods for gait control of legged robots [19–24]. CPG

parameter tuning is generally performed with manual methods, which can be

thought of as a supervised learning procedure. During this process, continuity

of oscillation and phase difference between joint angles are carefully set by the

designer. For this reason, the tuning procedure may become complicated and pro-

longed with the increasing number of limbs. In addition to supervised methods,

Ijspeert and Kodjabachian [25], Nakamura et al. [26], showed that non-supervised

learning techniques such as evolutionary algorithms and reinforcement learning

can be used to find the parameters of CPGs. There are various oscillatory models

which could be utilized in the construction of CPG models, see e.g., [18]. Such a

well-known model is given by the Matsuoka oscillator, which is employed to gen-

erate rhythmic patterns, and the output of the oscillator can be easily modified

with tonic inputs, [27]. Due to these and some other properties, it is preferred in

many CPG-controlled biped robot systems, see e.g., [28–31].
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CPGs need limited parameter space to create stable walking in the high degree

of freedom robots. Unfortunately, this requirement limits the possible range of

motions of these systems to periodic trajectories. On the other hand, CPGs

may require manual fine-tuning of their parameters due to their structures. In

addition to this, it may not be possible to determine a stable movement range due

to the inclusion of the robot plant dynamic equations into the equations of CPG.

Various neural network-based controllers (NNBCs) have also been developed to

avoid some of these disadvantages, see e.g., [32].

Neural networks (NNs), which have found vast application areas today as an

essential field of the machine learning theory, are inspired by biological neuron

cells, see e.g., [33]. Basically, NNs consist of interconnected simplified neural cell

models, which are building blocks of the network. There is a wide range of neuron

cell models from as simple as perceptron to complex ones such as leaky integrator

and long short-term memory (LSTM), [34–36]. Some of the NN architectures can

perform better in different problems. Feedforward NNs are successfully applied to

classification and object detection types of problems, see e.g., [37–39]. In detail,

Krizhevsky et al. [37], Redmon and Farhadi [39] showed successful utilization

of convolutional neural networks (CNNs) in object classification and detection

problems, respectively. There are successful implementations of recurrent neu-

ral networks (RNNs) in natural language processing and next character or word

prediction in the text problems, see e.g., [40, 41]. At the same time, RNN-based

motion controllers can provide biped robot gait control solutions, which do not

have the disadvantages of CPG, such as limited motion range and manual tun-

ing requirement, in cases where other analytical-based exact and approximated

solutions are not desired or cannot be applied, see e.g., [42, 43]. Unlike the CPG

parameter tuning case, there are well-defined methods to adjust the parameters

of NNs, which are generally called learning algorithms. Various learning algo-

rithms, such as supervised, semi-supervised or unsupervised, could be utilized in

the training of NNs, see [34,44]. Among these, supervised learning algorithms are

frequently utilized for training NNs when input and output data sets are avail-

able, see e.g., [33]. In order to achieve this, different optimizers are developed
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and utilized, such as Adam, AdamW, and SinAdaMax, see e.g., [45–48]. In ad-

dition, weight initialization techniques are proposed to enhance the performance

of neural networks, such as Glorot and He initializers with various probability

distributions see e.g., [49–51].

Recently, spiking neuron models which are employed in neuromorphic engi-

neering studies are successfully applied to robot control problems to generate

CPGs and NNs. Rostro-Gonzalez et al. [52] proposed a CPG system based on

spiking neurons which are trained with Simplex method for hexapod robot loco-

motion such as walking, jogging, and running gait types. This work focused on

generating digital hardware-compatible locomotion controllers with high compu-

tational efficiency. In the proposed controller, a different connection topology is

required to change gait type, and it was performed by changing synaptic weight

matrices. Jaramillo-Avila et al. [53] benefited from a spiking neural network

(SNN) to process sensorial information from address event representation-based

camera images to decide the movement direction of biped robot. In [53], weights

of the proposed SNN were found experimentally. Guerra-Hernandez et al. [54]

performed real-life experiments on the CPG system based on spiking neurons

in biped, quadruped, and hexapod robots. They benefited from grammatical

evolution and Victor-Purpura distance-based fitness function to tune connection

weights. In this controller, the gait transition can be performed by resetting all

neuron membrane potentials and then setting the initial states of spike trains for

desired gait type. Gutierrez-Galan et al. [55] proposed a combination of three

spiking central pattern generators (SCPGs) to realize online gait type changes

with reasonable transition time by using the limited number of spiking neurons.

In the proposed structure, while selected SCPG begins to generate spike train,

previous SCPG is inhibited quickly. With the developed controller, the locomo-

tion of an arthropod-like robot was successfully controlled in real-time. Even

though each SCPG has a low number of neurons, the combined system requires

high redundancy to change between gait types, and also, neuron weights were

manually adjusted in this study. In addition, the sensorial information was not

taken into account, likewise aforementioned SCPG-based locomotion controllers.
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In these successful studies, the spiking neuron model is utilized to control lo-

comotion at different abstraction levels. Generally, sensorial information, which

can be beneficial, especially in inclined or rough terrain, was not processed in

SCPG-based locomotion controllers. This design selection may be related to the

limited processing or learning capability of the spiking neuron model compared

to LSTM type recurrent neuron models and the necessity of parameter tuning to

extract information from sensorial inputs. Recurrent neural networks have well-

defined learning techniques, and they may accomplish switching between different

gait types by using the same network weights via suitable training set pattern

selections. For more information on CPGs and their applications, the reader is

referred to e.g., [20, 56], and the references therein.

Researchers seek optimum combinations of different control techniques and

learning algorithms to benefit from the powerful sides of each of them in the

legged locomotion control problem. Auddy et al. [57] suggest a novel hierarchical

control mechanism consisting of a CPG and a feedforward neural network (FNN)

as low and high-level controllers for bipedal locomotion, respectively. In [57],

CPG was modulated by FNN to correct walking direction by using only two

connections. In detail, a combination of manual tuning and genetic algorithm

was utilized to find the parameters of CPG first. After basic walking behavior

is acquired via a tuned low-level controller, parameters of FNN are found by us-

ing deep reinforcement learning via further walking simulation experiments. In

this control scheme, lateral deviations from a straight direction were corrected

with two gains, which were the outputs of FNN, multiplied by sagittal hip os-

cillator CPG outputs. Mandava and Vundavilli [58] benefit from a newly pro-

posed modified chaotic invasive weed optimization (MCIWO) and well-known

particle swarm optimization (PSO) algorithms to find weights of a feedforward

neural network that is responsible for adaptively tuning gains of torque-based

proportional-integral-derivative (PID) controller during the bipedal locomotion.

First, ZMP and inverse kinematics concepts were utilized to find dynamically

balanced walking gaits. Later, neural networks are trained with MCIWO, PSO,

and the traditional steepest descent algorithm to estimate the best PID gains to

track walking gaits. After that, the performances of neural networks are tested
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in the simulation environment. Finally, this study employed selected neural net-

work weights to estimate PID gains of a real biped robot walking on ascending

and descending slope surfaces between [-5, 5] degree intervals. To sum up, these

recent studies needed to follow multiple parameter tuning stages because the

proposed controllers consisted of a combination of different types of systems such

as PID, CPG, and FNN. Unfortunately, these design selections may bring their

own disadvantages, such as controller design complexity and training difficulty.

One reason for the requirement of controller combination may be related to the

absence of the memory property of employed feedforward neural networks. On

the other hand, the LSTM neuron model has the ability to solve long-term re-

lationships with its memory property, and it is resistant to vanishing gradient

problems. For these reasons, LSTM recurrent layer has some advantages com-

pared to feedforward layers which are utilized in these two studies, and its usage

may enhance the abilities of proposed controllers in [57] and [58].

In a similar way, well-known Wiener and Hammerstein system identification

models employ a combination of a feedforward neural network and polynomial to

represent plant dynamics, see e.g., [59]. Since there is no memory term in feed-

forward neural networks, a polynomial block accompanies the feedforward neural

network block to add memory property to the system identification scheme in

a similar manner to CPG in the hierarchical control mechanisms and integrator

term in PID controllers. From this perspective, it is seen that feedforward neural

network blocks found usage in both control and system identification literature.

In our previous study, we compared the performance and parameter efficiency of

feedforward and recurrent neural networks for a CPG-controlled biped robot sys-

tem identification problem in an end-to-end manner, [60]. Here, the series-parallel

system identification scheme was used when comparing neural networks of various

depths to facilitate the memory requirement and provide a fair comparison. As

a result, the recurrent neural network with one regression layer and one LSTM

layer reached the lowest system identification error compared to all feedforward

network architectures. In this way, the potential of LSTM layers has been inves-

tigated in the legged locomotion identification problem, and it has been found

that their end-to-end usage is possible and efficient for the bipedal locomotion
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identification problem. In this context, the study in [60] requires further research

to find an optimum combination of recurrent and feedforward layers. In addition

to this, the effect of the type of nonlinearities in the neuron model should be in-

vestigated for bipedal locomotion system identification. The results given in [60]

may also make sense for the legged locomotion control problem because legged

locomotion includes hybrid dynamics, so tracking the walking phase changes is

required for high-performance locomotion control. For this reason, the usage of

recurrent neural networks with LSTM layers needs to be investigated extensively

in the biped locomotion control problem.

In this dissertation, we propose utilizing neural network-based controllers con-

sisting of feedforward and recurrent neuron layers as torque and position con-

trollers for biped robot locomotion. The proposed NNBC can behave like a

meta-learner compared to the CPG type controller. In detail, it may generalize

the input and output relations of the CPG controllers under suitable training

conditions. We note that we utilized CPGs to generate joint angle and torque

data in this work to train the NNBCs in achieving successful walking or biped

robots. Naturally, if similar data could be generated or obtained by other means,

our approach could also be utilized using such data. Simulation or computer

animation tools are natural candidates to generate such data, and recently their

usage in robotics and related areas has become an important research area [61].

Such an approach could be utilized to generate appropriate joint angle or torque

values [62], as well as in controlling robots [63]. Since we focus on CPG-based

data, we do not pursue such an approach in this work. It should be noted that

the utilization of such data, along with data obtained by CPG’s, is an exciting

research problem that deserves further investigation. The literature is rich on

this subject, and for further information, see e.g., the following works and the

references therein [64–68].

Analytical approaches are frequently employed to sustain stable legged loco-

motion with classical control techniques in the literature [56]. First, gait type

is determined by analytical methods or observation in the path planning stage.

Then joint trajectories are derived by benefiting from inverse kinematics equa-

tions under selected stability constraints such as COG, ZMP, FRI, CMP, etc.
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Later on, required joint torques may be calculated by inverse dynamic equations,

if possible, or classical control techniques such as PID see e.g., [69].

Unfortunately, legged robot dynamics include highly nonlinear terms, and they

show hybrid dynamic behavior due to the nature of walking, so the resulting

equations contain complex expressions. For these reasons, various simplification

methods are proposed to ease the analysis of the robot model and the application

of classical control techniques for controlling legged locomotion in the literature.

One of them is applied by ignoring extremities with low weight, such as legs in

the robot model see e.g., [69–72]. In this way, the analysis of the robot model

gets more straightforward while the model accuracy decreases. However, the per-

formance of some control methods may depend on the accuracy of the utilized

robot model. In other words, inaccuracies due to simplification may decrease

control performance or cause unstable behavior depending on the level of simpli-

fication [56]. For instance, ignoring limb weight to ease COM calculations may

violate stability criteria such as reported in the [70].

On the other hand, the limited parameter space of classical controllers may not

perform well for varying robot dynamic properties or terrain conditions, so various

model predictive control (MPC) architectures are proposed in the literature for

biped locomotion, see e.g., [72, 73]. In classical control techniques such as PID,

there is a limited number of controller parameters that can be tuned to track

trajectories for low-level control scenarios. Even though MPC architectures relax

this limitation, they may require complex controller designs, and an external gait

generator block is added to the control diagram to drive a low-level controller. On

the other hand, recurrent neural networks can be utilized as controllers for both

low-level and high-level control problems simultaneously with their large tuneable

parameter space like in their biological counterparts. Moreover, proposed NNBCs

in this study are trained by using the original robot model dynamics with all

nonlinear terms. This situation may increase harmony between the controller and

the robot model. Beyond these advantages of the proposed NNBCs compared to

classical control approaches, utilizing LSTM layers in the neural controllers such

as our proposed controllers may make the design of high-performance neural

model reference control architectures possible.
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1.2 Key Contributions

As the main contribution of this dissertation, we propose NNBCs, which in-

volve feedforward and recurrent layers rather than classical feedforward neural

network-based controllers for biped robot locomotion control as exemplified in

Figure 1.1(A). Since the biped robot model shows hybrid dynamic behavior due

to changes between flight and stance phases for each leg, we expect that the re-

current layer, which consists of LSTM-type neurons, may contribute to tracking

these changes and control locomotion successfully.

As a second contribution to support this idea, the proposed hybrid neural

controllers are utilized in various combinations placed in the feedback loop and

feedforward paths as shown in Figure 1.1(B) and Figure 1.1(C), respectively.

Moreover, the latter is employed with a PID controller for gait control.

As a third contribution, we proposed the utilization of two NNBCs, which

generate position and torque outputs, in the same controller diagram together,

as shown in Figure 1.1(D). We have performed various simulations under varying

ground conditions using these neural controllers. The results of these simulations

are analyzed within the scope of this dissertation to demonstrate the superiority

of proposed NNBCs against their CPG and PID-type controller alternatives.

As another contribution, the generalization abilities of proposed NNBCs are

demonstrated. To do this, the effects of hyperparameter selection such as network

size, mini-batch size, and L2 regularization are reported in the generalization

performance, depending on the placement of the controller. Our results indicate

that the proposed NNBCs perform better in many cases for a wide range of ramp

angles, walking speed intervals, and rough terrain environments than their CPG

and PID-based counterparts.

As a final contribution, we analyze the performance of recurrent neural net-

works in system identification for a biped robot model to a broader extent. In

detail, we compare the effectiveness of different neural network architectures and
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neuron layer types for this purpose under parallel and series-parallel models sep-

arately. Our results show that it is possible to reach lower system identification

error rates by combining feedforward and recurrent layers.
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Figure 1.1: Illustrations of the proposed neural network architecture and control
diagrams in the Chapter 2
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1.3 Organization of the Dissertation

This dissertation consists of four chapters. The first chapter begins with a brief

introduction to the dissertation content. After that, we summarize related lit-

erature on the legged locomotion and our motivation for this study. Then, we

present the key contributions of the dissertation. Finally, the chapter is finished

by explaining the organization of the dissertation.

The second chapter introduces the biped robot model on which control and

system identification will be applied using neural networks and the CPG utilized

to generate supervised learning data sets. Then, we revisit feedforward and recur-

rent neural networks with explaining forward and back propagation equations in

detail. After that, we describe our methods for preparing data sets and forming

neural network architectures. However, designing such NNBCs to control bipedal

locomotion requires extensive research on the determination of optimum neural

network architecture, neuron layer type, and training procedures such as regular-

ization techniques. For this reason, we propose the use of various types of neural

networks in feedback and feedforward paths. Afterward, we train these neural

networks and perform extensive experimental studies to measure the performance

of proposed NNBCs with each other and CPG. In the end, we discuss the results

in detail.

In the third chapter, our studies are presented on the use of recurrent neural

networks for the system identification of bipedal locomotion due to the successful

results encountered in the previous chapter. First, we define the system identi-

fication problem for bipedal locomotion, then explain the data set preparation

for this study. Later on, parallel and series-parallel system identification models

are introduced, and candidate neural network architectures are reported. After

that, proposed neural networks are trained to converge to the input-output rela-

tion of the biped robot model. Afterward, trained neural networks are tested to

measure system identification performance, and neural network architectures are

compared. Lastly, the obtained results are discussed here.
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In the fourth chapter, we review what has been done in the dissertation and

debate the results obtained in the control and system identification studies in

Chapters 2 and 3. Finally, the dissertation is completed by determining open

problems and possible future research directions according to the obtained re-

sults.
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Chapter 2

Control of Legged Locomotion

with Neural Networks

This chapter focuses on the NNBC design problem for two-legged robot motion

control in various terrain conditions. To yield this, we utilize LSTM neurons

at the recurrent layers and linear neurons at the feedforward layers in the pro-

posed neural controller architecture. Furthermore, NNBCs, which generate either

joint torques or limb angles to achieve stable walking depending on the control

scenario, are trained with varying training options. Then, their stable walking

performances are evaluated and compared in the simulation environment.

Some of the content in this chapter is first published in Journal of Intelligent

& Robotic Systems, 104-4, 1-30, 2022 by Springer Nature and reproduced with

permission from Springer Nature, see [1].

2.1 Problem Definition

This section presents the biped robot model, CPG, and the basics of neural net-

works employed in this study. The biped robot model is utilized in both data set
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generation together with CPG and evaluation of proposed NNBCs in the various

walking environments. To this end, forward propagation, back-propagation, and

weight update concepts are visited for NNBCs that consist of feedforward and

recurrent layers.

2.1.1 Biped Robot Model

The two-legged robot used in this study consists of a point mass hip, four rigid

limbs, and six joints, as shown in Figure 2.1. Its equations of motion, which

are given in the appendix for the sake of completion, can be obtained by using

standard methods of mechanics, see e.g., [30] for further information. Moreover,

horizontal and vertical friction and ground reaction forces are also modeled with

parallel spring and damper between the ground-contacting foot and the ground

as seen in Figure 2.1.

The generalized coordinate vector of the biped robot system can be found in

a similar way to [74, 75] and it is represented with the 6 degrees of freedom as

shown below:

qqq = [x1, x2, θ1, θ2, θ3, θ4]
T . (2.1)

The robot model is controlled with the torques created in the six joints, which

are at the hip, knee, and ankle joints on both legs, as follows:

TTT = [Tr1, Tr2, Tr3, Tr4, Tr5, Tr6]
T . (2.2)

In the single support phase, the ankle torque of the foot which is in the flight

phase does not affect robot model dynamics, so the ankle torque of that foot is

excluded from the torque vector in (2.2).

The elastic ground contact model, which is defined by parallel spring and

damper, permits horizontal and vertical movement of the support feet, such as

slipping over the walking surface and sinking through the ground. Thus, the

degree of freedom of the robot model does not decrease at single or double support

phases, which is different from [74, 75] where the hard ground contact model is
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employed. Under these conditions, the biped model becomes a fully-actuated

system at the double support phase. However, the removal of ankle torque in

the flight phase makes the overall system underactuated in the single support

phase. Moreover actuated ankle joint makes it possible to perform static stable

walking [76]. In addition to joint torques, ground reaction and frictional forces

also affect the robot movement during the stance phase of each leg.

The parameters utilized in the Figure 2.1 are described in Table 2.1. The ramp

angle between the walking plane and the ground plane is not shown here in order

not to complicate the figure.
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Figure 2.1: Representation of biped robot model joints, limbs, torques, limb
angles, and interaction with the ground

16



Table 2.1: Explanation of terms used in robot model

Paramater Description

x1, x2 Horizontal and vertical hip coordinates
θ1, θ2, θ3, θ4 Limb angles
l1, l2 Lower and upper leg limb lengths
m1,m2 Mass of upper and lower leg limbs
g Gravitational acceleration
M Body mass
Tr1, Tr2, Tr3, Tr4, Tr5, Tr6 Torque values and directions
Fg1, Fg2, Fg3, Fg4 Ground reaction and friction forces
k Spring coefficient
d Damping coefficient

2.1.2 Central Pattern Generator

Since we aim to utilize NN structures to control the motion of biped robots,

we need meaningful data representing successful walking for the training of our

proposed networks. CPGs, which consist of combination of rhythm generators,

produce periodic waveforms for joint angles and/or torques to provide stable and

periodic locomotion, see e.g., [77]. Taga et al. [30] showed that coupled structure

of CPG and biped robot is capable of performing stable locomotion by choosing

the parameters of CPG appropriately. Unfortunately, an analytical method to

select appropriate parameters is unknown, and the whole tuning should be done

manually. We utilize this CPG-driven two-legged robot model to obtain the data

sets related to successful walking, see [30]. The utilized CPG equations take

feedback from the biped model, which interacts with the walking surface, and

calculate the torques applied to robot model joints. In detail, the CPG model

utilized in this work consists of one Matsuoka oscillator per joint; hence the entire

structure contains six such oscillators, as demonstrated in Figure 2.2. Moreover,

each oscillator includes one primary and one supplementary leaky integrator neu-

ron. Accordingly, the CPG structure contains 12 coupled leaky integrator models
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as given below (i = 1, ..., 12):

τiu̇i =− ui +
12∑

i,j=1

wijyj − βvi + u0 + Feedi(xxx, ẋ̇ẋx), (2.3)

τ ′i v̇i =− vi + yi, (2.4)

yi = max(0, ui), (2.5)

where variables ui, wij, yj, vi, u0, Feedi, τi and τ ′i correspond to internal state

of ith neuron, coupling coefficient from jth to ith neuron, output of jth neuron,

self-inhibition of the ith neuron, speed excitation level input, feedback from the

biped platform to ith neuron where (xxx, ẋ̇ẋx) are the biped internal states, and time

constants, respectively. Robot model feedback connections are taken into CPG

model with Feedi(xxx, ẋ̇ẋx) function which is detailed in the Appendix. The outputs

yi of CPG are utilized to generate the joint torque inputs for the biped robot as

Tr1 = phey2 − phfy1, Tr2 = phey4 − phfy3, (2.6)

Tr3 = pkey6 − pkfy5, Tr4 = pkey8 − pkfy7, (2.7)

Tr5 = (paey10 − pafy9)max(0, Fg2), (2.8)

Tr6 = (paey12 − pafy11)max(0, Fg4), (2.9)

where phf , p
h
e , pkf , pke , paf , and pae coefficients correspond to torque multipliers

which are again manually hand-tuned to generate stable locomotion. The speed

excitation value u0 is a tonic input that has an amplifying effect on the oscillation

amplitude of CPG as given in (2.3)-(2.5). Increase in oscillation amplitude results

in higher joints torques which cause higher acceleration of limb movements as

shown in (2.6)-(2.9). Hence, the CPG driven robot model walking speed increases

with increasing speed excitation value. For further information, see [30].

2.1.3 Neural Network Based Controller Design

The use of NN as a controller, which is currently a widely investigated research

topic, allows the addition of nonlinear plant dynamics that are ignored or lin-

earized because of the limited parameter space of classical controllers during the
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Figure 2.2: Demonstration of neural rhythm generator. Weights of interconnec-
tions are represented with wfe, wrl, whka and neural rhythm generator torque
multipliers are shown with phf , p

h
e , pkf , pke , paf , pae .
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controller design process, see e.g., [78]. With this motivation, we propose hybrid

neural network (HNN) structures consisting of feedforward and recurrent layers

as a controller for biped locomotion control.

The generic form of a multi-layer feedforward NN is demonstrated in Figure

2.3. Typically inputs of a layer are multiplied with weights, and their summation

is passed through a nonlinear activation function to obtain the outputs of this

layer. This process is repeated till the output is calculated.

Inputs

Hidden Layer 

Neurons

Input Layer 

Neurons

Output Layer

Neurons

Outputs

W1 W2 W3 W4

Figure 2.3: Feedforward NN where W1, W2, W3 and W4 show the weight matrices
of layers

Let us denote the input vector as xxx and the output vector as ooo. Their relation

may be given symbolically as:

ooo = F (WWW,xxx), (2.10)

where F is a nonlinear function, andWWW symbolically represents the weights of NN.

Let (xxx,ddd) be an input/output pair in our training set and EEE be any meaningful

cost function that measures the closeness of ddd and ooo. The basic problem can be

recast as an optimization problem as given below:

WWW opt = min
WWW

EEE. (2.11)
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This optimization can be achieved by using the well-known back-propagation

algorithm, see [34].

Figure 2.4 shows the generic structure of a LSTM recurrent layer where neurons

have recurrent connections from other neurons in the same layer and also external

input connections. In this case, each LSTM cell has an output yyy[t] as well as an

internal state ccc[t]. Symbolically, if WWW represents the weights of the RNN shown

in Figure 2.4, the input-output relation can be formally represented as:

yyy[t] = F (WWW,yyy[t− 1],xxx[t]), (2.12)

where F is a nonlinear function that depends on the activation functions utilized

in the LSTM cell. Now assume that (xxx[t], ddd[t]) is an input/output sequence in

the training set. The problem is to choose appropriate weights WWW such that

when the input sequence is xxx[t], the output sequence yyy[t] is sufficiently close to

the desired output sequence ddd[t]. Similar to (2.11), this could also be recast as

an optimization problem, and this optimization can be achieved by using the

well-known back-propagation through time algorithm, see [79].

A classical way of solving the optimization problem given by (2.11) is to utilize

the well-known gradient descent approach. In this case, the weights are symboli-

cally updated as follows:

WWW k+1 = WWW k − α
∂EEE

∂WWW k

, (2.13)

where the term ∂EEE/∂WWW k is called the error gradient, and α > 0 is the learning

coefficient. It can be shown that under certain conditions, the iterations defined

by (2.13) solve the optimization problem given by (2.11) provided that α > 0 is

sufficiently small. This basic approach is utilized in the NN training algorithm

with slightly more complex modifications, see e.g., Adam optimization given in

the sequel.

In short, the weight update outlined above is achieved in two steps that se-

quentially follow each other. First, an input pattern from the training set is

applied to the NN input, and the outputs of all layers are calculated. This phase

is called forward propagation. After this step, the cost (or error) in (2.11) can
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Figure 2.4: Recurrent layer with LSTM neuron cells where z−1 denotes one step
time delay

be evaluated. Following this step, the error gradients starting the output layer

are calculated. In this case, it turns out that the error gradients of one layer are

quite helpful in evaluating the error gradient of one preceding layer. This phase

is called (error) back-propagation. After all error gradients are calculated, the

weights are updated as given by (2.13) or slightly more complex methods, and

this process is repeated for other input/output pairs in the training set.
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2.1.3.1 Forward Propagation

The general structure of NNBCs to be used in this study is presented in Figure

2.5 where the combination of feedback connections from the robot platform and

external reference inputs constitute input sequence xxx[t] which is given to the

LSTM layer. Then, the output of the recurrent layer is given to the feedforward

layer as input. After that, the feedforward layer performs the linear regression

process by taking the weighted average of the inputs, and it constitutes regression

output sequence ooo[t] which is the joint torques and/or limb angles as the output

of the NNBC depending on the control scenario. Throughout this work, NNs

have been trained with N = 1000 steps long patterns starting at t0 = 0, ending

at t1 = 10 seconds and sampled with ∆t = 0.01 second time intervals.

Input

Sequence

(𝒙[𝑡])

LSTM

Layer

(𝒙 𝑡 → 𝒚 𝑡 )

Regression

Layer

()𝒚 𝑡 → 𝒐 𝑡 )

Torque/Angle

Output

Sequence

(𝒐[𝑡])

Figure 2.5: Proposed HNN-based controller structure. Inputs and outputs of
recurrent layer (LSTM layer) are presented with xxx[t] and yyy[t]. In a similar way,
inputs and outputs of the feedforward layer (regression layer) are shown with ŷyy[t]
and ooo[t].

The details of the LSTM neuron model, whose internal structure is shown in

Figure 2.6, consists of four inner gates and two states given between equations

(2.14)-(2.19) see e.g. [36,80].

Input gate:

iii[t] = σ(WiWiWixxx[t] +UiUiUiyyy[t− 1] + bibibi). (2.14)

Forget gate:

fff [t] = σ(WfWfWfxxx[t] +UfUfUfyyy[t− 1] + bfbfbf ). (2.15)
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Figure 2.6: LSTM neuron model internal structure

Cell candidate gate;

aaa[t] = tanh(WaWaWaxxx[t] +UaUaUayyy[t− 1] + bababa). (2.16)

Output gate:

ooo[t] = σ(WoWoWoxxx[t] +UoUoUoyyy[t− 1] + bobobo). (2.17)

In forward propagation, weight matrices WiWiWi, WfWfWf , WaWaWa, WoWoWo are multiplied with

LSTM layer input xxx[t] at time t and added to related gate activations. Likewise,

the parameter matrices UiUiUi, UfUfUf , UaUaUa, UoUoUo are multiplied by the hidden state vector

of LSTM layer expressed by yyy[t − 1] at time step t − 1 and added to the gate

activations. Then bias terms, expressed as bibibi, bfbfbf , bababa, bobobo, are added to the gate ac-

tivations. After this, nonlinear activation functions which are hyperbolic tangent

(tanh) and sigmoid (σ) in LSTM gates are applied to the gate activations [80].

After calculating the values of the internal gates, the update of the cell state

and the hidden state is done as shown in Equation (2.18) and (2.19), see e.g.

[36,80].

Cell state:

ccc[t] = fff [t] · ccc[t− 1] + iii[t] · aaa[t]. (2.18)

Hidden state:

yyy[t] = ooo[t] · tanh(ccc[t]). (2.19)
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Cell state is demonstrated with the horizontal line in Figure 2.6 and informa-

tion that is carried by cell state can be easily modified with linear interactions

or preserved between time steps. Moreover, the nonexistence of nonlinear opera-

tion in the cell state line helps to avoid gradient vanishing type problems which

may be seen in RNN training, see [81]. The output of the LSTM cell is denoted

with the hidden state, and it is expressed by yyy[t] at time step t. In our proposed

network architecture, the hidden state yyy[t] is given as input to the subsequent

feedforward regression layer.

In this study, the feedforward layer at the output of the network is used as

a regression layer. The parameter matrix of the feedforward layer neurons is

expressed by the variable WfnnWfnnWfnn. Feedforward layer inputs are chosen as an ex-

panded version of outputs of the previous recurrent layer. Torque/angle output

of the neural controller ooo[t] at the time t is calculated as:

ooo[t] = WfnnŷWfnnŷWfnnŷ[t], (2.20)

where ŷ̂ŷy[t] = [yyy[t] 1]T .

2.1.3.2 Back-Propagation

As explained above, the weights of NN are chosen to minimize an appropriate cost

function. Assume that (xxx[t], ddd[t]) is a given input/output pattern in the training

set. As mentioned above, we sample the signals with ∆t = 0.01 second-long

time steps for 10 seconds. Let ooo[t] be the time output of NN to the input, again

sampled similarly. Then, the error metric to be used in (2.11) is chosen as given

below:

EEE =
∆t

2

N∑
t=1

(ooo[t]− ddd[t])2. (2.21)

where N=1000. Hence, to update any weight WWW in the NN, we need to compute

the error gradients ∂EEE/∂WWW k, see (2.13). To this end, error gradient with respect

to regression layer parameters is calculated as given in (2.22) under the half mean

square error metric and it is used to update the parameters of WffnWffnWffn matrix via
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Adam optimizer, see [45].

∂EEE

∂WffnWffnWffn

=
∂EEE

∂ooo

∂ooo

∂WffnWffnWffn

=
N∑
t=1

∆t(ooo[t]− ddd[t])ŷ̂ŷy[t]T . (2.22)

After the error gradients of the last layer weights are computed, we need to relate

the cost function with the previous layer weights in the network. To achieve

this, the partial derivative of the cost function with respect to the output of the

previous layer is computed by using the chain rule. Thus, the error gradient to

be used in the update of recurrent layer weight arising from the recurrent layer

output (yyy[t]) is calculated as:

∂EEE

∂yyy[t]
=

∂EEE

∂ooo[t]

∂ooo[t]

∂yyy[t]
= WffnWffnWffn

T∆t(ooo[t]− ddd[t]). (2.23)

Back-propagation through time (BPTT) algorithm is an extension of standard

back-propagation used in RNNs. The BPTT equations which are used to update

the LSTM weights are given between (2.24)-(2.35), see e.g. [82]. Since the neuron

model contains four gates, some parameters are similarly processed in equations.

Therefore, to simplify the update equations, we first define the following:

ggg[t] =


iii[t]

fff [t]

aaa[t]

ooo[t]

 , WWW =


WiWiWi

WfWfWf

WaWaWa

WoWoWo

 , UUU =


UiUiUi

UfUfUf

UaUaUa

UoUoUo

 , bbb =


bibibi

bfbfbf

bababa

bobobo

 . (2.24)

The sum of the error gradient at time step t in the recurrent layer is shown as:

δoutoutout[t] =
∂EEE

∂yyy[t]
+ ∆out∆out∆out[t]. (2.25)

Error gradient is composed of two main components. The first component comes

from the next layer. In our case, this term is given by (2.23). The second error

gradient is related to the BPTT algorithm, which is denoted as ∆out∆out∆out[t] and is

the backpropagated error gradient from the next time step of LSTM.

Gradients of LSTM internal gates are given in (2.26)-(2.30).

δsδsδs[t] = δoutδoutδout[t] · ooo[t] · (1− tanh2(sss[t])) + δsδsδs[t+ 1] · fff [t+ 1], (2.26)
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δiδiδi[t] = δsδsδs[t] · aaa[t] · iii[t] · (1− iii[t]), (2.27)

δfδfδf [t] = δsδsδs[t] · sss[t− 1] · fff [t] · (1− fff [t]), (2.28)

δaδaδa[t] = δsδsδs[t] · iii[t] · (1− aaa[t]2), (2.29)

δoδoδo[t] = δoutδoutδout[t] · tanh(sss[t]) · ooo[t] · (1− ooo[t]). (2.30)

For simplicity, the error gradients given in (2.27)-(2.30) can be collected in a

single error gradient vector as follows:

δgδgδg[t] =


δiδiδi[t]

δfδfδf [t]

δaδaδa[t]

δoδoδo[t]

 . (2.31)

The error gradient, which is backpropagated to the previous LSTM time step,

that is used in (2.25), is given below:

∆out∆out∆out[t− 1] = UUUT · δgδgδg[t]. (2.32)

Finally, error gradients to update parameters are calculated as follows:

∂EEE

∂WWW
=

N∑
t=1

δgδgδg[t]xxx[t]T , (2.33)

∂EEE

∂UUU
=

N−1∑
t=1

δgδgδg[t]outoutout[t− 1]T , (2.34)

∂EEE

∂bbb
=

N∑
t=1

δgδgδg[t]. (2.35)

For details, see e.g. [82].

2.1.3.3 Adam Optimizer

Adaptive Moment Estimation (Adam) is a first-order algorithm that can be ap-

plied to the optimization problems as given by (2.11), see [45]. As the name
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suggests, Adam uses first and second moment estimates to determine the indi-

vidual adaptive learning rates for the parameters to be optimized, see (2.13).

In this study, modified Adam optimizer without a bias correction term is em-

ployed to update NN parameters, as given in equations (2.36)-(2.39), see [45]. The

variablesXXX used in equations (2.36), (2.37) and (2.39) represent any of parameter

matrices/vectors in feedforward (WffnWffnWffn) and recurrent (WWW , UUU , bbb) NN layers. ∂EEE
∂XkXkXk

is the error gradient to be used to update the matrix/vector XXX and k subscript

means the error gradient of kth training pattern.

At the end of an epoch, calculated error gradients for each training set pat-

tern are utilized to optimize parameters. Initially, MMM0 and RRR0 first and second

moment estimation matrices which have the same dimension with the parameter

to be updated are set to zero. After that, moment estimates and parameters are

updated for each training set pattern. Between (2.36)-(2.39), all operations on

vectors are performed in element-wise.

MMMk = β1MMMk−1 + (1− β1)
∂EEE

∂XkXkXk

, (2.36)

RRRk = β2RRRk−1 + (1− β2)(
∂EEE

∂XkXkXk

� ∂EEE

∂XkXkXk

), (2.37)

αk = α

√
1− βk

2

1− βk
1

, (2.38)

XXXk+1 = XXXk − αk
MMMk√
RRRk + ε

− αk
L2

n
XXXk. (2.39)

where β1, β2, α and ε are various constants which controls the first, second or-

der moments, learning constant and offset in denominator, respectively, and are

chosen in our work as β1 = 0.9, β2 = 0.999, α = 0.001 and ε = 10−8.

The variables XXXk, XXXk+1, L2, n correspond to the weight matrix to be updated,

the post-update weight matrix, the L2-regularization parameter, and the num-

ber of training set patterns, respectively. The effective learning coefficient αk is

reduced in the later stages of training, as shown in Equation (2.38).
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Note that the last term in (2.39) is due to the addition of L2-regularization

term (L2X
T
k Xk)/(2n) to (2.21); indeed the last term in (2.39) is the gradient of

this term. Also note that (2.39) is a sophisticated version of (2.13). Indeed, if we

set β1 = 0, β2 = 1, then (2.39) became the same as (2.13).

2.2 Methodology

In this section, we explain three different scenarios generated to evaluate the

stable locomotion generation performance of NNBCs. To this end, training, val-

idation, and testing data sets are generated for each scenario. Then, NNs are

trained to produce desired output data for the input data of patterns in the

training set. Lastly, the most successful NN architecture is determined for the

locomotion control problem.

2.2.1 Data Set Preparation

The two-legged robot driven by the CPG with the manual tuning of its parameters

as in [30] is used for different speed excitation values and ramp angles to generate

discrete data sets to be used in the training, validation, and testing of NNs. In the

scope of this work, ramp angle and speed excitation values are chosen as constants

during walking simulations. Here, the ramp angle value determines the slope of

the walking environment, and the speed excitation value affects walking velocity

by amplifying oscillations of CPG. Due to the limitations of the CPG model, the

robot model is not expected to achieve stable locomotion for each ramp angle and

speed excitation value combination. Therefore, CPG-driven movements need to

be classified as successful and unsuccessful gait patterns. To achieve this, CPG-

driven locomotion patterns are examined by an expert, and motion patterns that

have continuity are selected as successful locomotion patterns. Then, important

metrics are determined to automate the detection of walking success, such as 0.6

m/sec minimum average walking velocity, 0.6 m minimum hip height, 0.2 m max-

imum jumping height, and ankle positions. After that, these metrics are utilized
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in both data set generation, and NN controlled walking success evaluation.

Training, validation, and testing data sets are separately produced using dif-

ferent ranges of ramp angles and speed excitation values to prevent over-fitting

problems. In this context, 40 uniformly distributed speed excitation values in

the range of [3 10] and 31 uniformly distributed ramp angles in the range of [-7

7] degrees are selected to form the training data set. A CPG controller drives

the robot model for 1240 different combinations of these ramp angles and speed

excitation levels. As a result, 398 of these 1240 combinations are determined as

stable walking patterns. Similarly, for the validation data set, 30 different speed

excitation values in the range of [2 11] and 30 different ramp angles in the range

of [-8 8] degrees are run together. Before the robot model is driven for 900 dif-

ferent combinations of these ramp angle and speed excitation levels by the CPG

controller, conflicting ramp angle and speed excitation value combinations with

the previous 1240 combinations are eliminated from the trial set. Hence, indepen-

dence between data sets is preserved. Under these conditions, 195 stable walking

patterns are obtained for the validation data set. Finally, in order to construct

a test data set, 31 different speed excitation values in the range of [1 12] and

30 different ramp slopes in the range of [-9 9] degrees are selected. Conflicting

combinations with previous sets are eliminated again. Thus, 148 stable walking

patterns which are different from the previous data sets were obtained on the

930 configurations. According to successful locomotion criteria, the CPG-driven

biped robot model becomes successful at 32.1% of the training set combinations,

21.67% of the validation set combinations, and 15.91% of the test set combina-

tions. Details are summarized in Table 2.2.

Table 2.2: Data set generation with central pattern generator driven biped robot
platform

Excitation Ramp Experimented Successful Successful
Value Angle Configuration Walking Walking
Interval Interval Number Number Percentage

Training [3 10] [−7◦ 7◦] 1240 398 32.1%
Validation [2 11] [−8◦ 8◦] 900 195 21.67%
Testing [1 12] [−9◦ 9◦] 930 148 15.91%
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To speed up the training of the NNBCs, which are described in the following

subsections, produced data set input and output patterns are passed through dec-

imation operation, which is a signal processing technique for decreasing sample

points in sequences without causing aliasing distortion. Inputs and outputs of

the CPG-driven biped robot model which is simulated at a rate of 10 KHz for

10 seconds long are filtered with an equiripple low pass filter which has 100 Hz

passband cutoff frequency. Then, downsampling operation at a rate of 100 to 1

is applied to filtered data. In this way, the decimation operation is completed

without losing important information. After that, these locomotion data sets are

re-scaled to fit the [-0.5 0.5] range to facilitate the training process and allow the

usage of different neuron activation functions. Thus, robot model input and out-

put data which are re-scaled and re-sampled at 100 Hz are produced to generate

various supervised learning data sets.

Within the scope of this work, the performance of NNBCs is evaluated in

three scenarios. In the first scenario, the joint torque generation capability of the

neural controller is evaluated in a closed-loop system where the neural controller

takes feedback connections from the robot model and speed excitation input

directly. In the second scenario, the reference limb angle producing ability of

neural controller structure is examined with respect to ramp angle and speed

excitation value inputs. In this scenario, proposed limb angles are tracked with

a PID controller. In the third scenario, the neural controller replacement of the

PID controller is performed, and the joint torque generation capability of the

neural controller is evaluated by taking reference and actual limb angles. To this

end, three different input-output data sets have been produced from the re-scaled

and re-sampled locomotion data sets, as detailed in the following subsections.

2.2.1.1 Torque Control Data Sets

In the first scenario, NNs are assigned to generate torque patterns according to

speed excitation value input and feedback inputs taken from the biped robot

platform, as listed in detail below:
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• 6 Output data sequence [Dimensions: 6x1000]

– 6 Joint torques: Tri where i = 1, ..., 6

• 32 Input data sequence [Dimensions: 32x1000]

– 12 Feedback connections: Feedi(xxx, ẋ̇ẋx) where i = 1, ..., 12

– 4 Limb angle states: θi where i = 1, ..., 4

– 14 Velocity states: ẋi where i = 1, ..., 14

– 1 Speed excitation level

– 1 Bias term

2.2.1.2 Position Control Data Sets

In the second scenario, NNs are assigned to generate limb angle patterns according

to speed excitation value and ramp angle inputs, as given in detail below:

• 4 Output data sequence [Dimensions: 4x1000]

– 6 Limb angles: θi where i = 1, ..., 4

• 3 Input data sequence [Dimensions: 3x1000]

– 1 Speed excitation value

– 1 Ramp angle in degree

– 1 Bias term

Note that, unlike the torque control scenario, NN takes ramp angle information as

an input because the neural controller needs to run without feedback connections

from the robot platform, so it does not have the opportunity to observe the

walking environment.
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2.2.1.3 PID Controller Data Sets

In the third scenario, NNs are assigned to generate torque patterns according

to reference limb angles and limb angle feedback taken from the biped robot, as

shown in detail below:

• 6 Output data sequence [Dimensions: 6x1000]

– 6 Joint torques: Tri where i = 1, ..., 6

• 8 Input data sequence [Dimensions: 8x1000]

– 4 Reference limb angle states: θnni where i = 1, ..., 4

– 4 Limb angle states: θi where i = 1, ..., 4

Different from two previous data sets, joint torques are outputs of the PID con-

troller tuned to track CPG-driven robot limb angles in a closed-loop system.

Details of the PID controller are given in the related subsection.

2.2.2 Torque Controller Implementation

In the first control scenario, closed-loop NNBCs are assigned to generate joint

torque values. Note that in this scenario, the neural controller receives (external)

speed excitation level and (internal feedback) biped robot states signals as its

inputs, as shown in Figure 2.7. In this scenario, NNs are trained via torque

control data set extracted from the CPG-driven biped robot model walking data

as explained previously. We intuitively expect that taking feedback directly from

the biped robot and indirectly from the environment should increase the stability

of locomotion and robustness against external disturbances. Thus, larger action

space may be obtained while stability is preserved due to the generalization ability

of NNBCs.
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Figure 2.7: Torque control diagram

2.2.2.1 Neural Network Architecture Design

NN architecture has key importance in control performance. For this reason,

different network architectures are trained and tested to find the most appropriate

architecture for the torque control problem. Since the torque control requires

continuous output in an interval, the regression layer is added to the end of the

NN architecture, as shown in Figure 2.5. Moreover, the robot model has a hybrid

dynamic structure due to changes between flight and stance phases for each leg.

Ankle joint torque does not affect system dynamics while a foot is not in contact

with the ground in the flight phase. However, ankle joint torque, ground reaction,

and friction forces affect system dynamics while the foot is in contact with the

ground in the stance phase. Therefore, these walking phase changes must be

tracked for high-performance control. For this purpose, at least one recurrent

layer is decided to be added to NN architecture. By considering these points, five

different NN architectures in which different numbers of feedforward and recurrent

layer with various neuron numbers are used to find the most appropriate NNBC

architecture as reported in Table 2.3. In addition to these, the feedforward layer

between LSTM layers is also used to diversify the tested architectures. Finally, all

networks are ended with six neurons, including the feedforward regression layer.
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Table 2.3: NNBCs architecture for torque control scenario. Neuron number of layers are given in parentheses.

Config. #1 Config. #2 Config. #3 Config. #4 Config. #5

Learning constant 0.001 0.001 0.001 0.001 0.001
L2 constant 0 0 0 0 0
Mini-batch size 1 20 20 20 20
LSTM layer number 1 2 2 2 1
Feedforward layer number 1 1 2 2 1
Feedforward layer activation Linear Linear Linear Linear Linear
Regression neuron number 6 6 6 6 6

Neural network structure

Input Sequence:

[32x1000]

LSTM Layer (50)

Feedforward Layer (6)

Torque Output Sequence:

[6x1000]

Input Sequence:

[32x1000]

LSTM Layer (50)

LSTM Layer (50)

Feedforward Layer (6)

Torque Output Sequence:

[6x1000]

Input Sequence:

[32x1000]

LSTM Layer (50)

Feedforward Layer (25)

LSTM Layer (50)

Feedforward Layer (6)

Torque Output Sequence:

[6x1000]

Input Sequence:

[32x1000]

LSTM Layer (50)

Feedforward Layer (50)

LSTM Layer (50)

Feedforward Layer (6)

Torque Output Sequence:

[6x1000]

Input Sequence:

[32x1000]

LSTM Layer (200)

Feedforward Layer (6)

Torque Output Sequence:

[6x1000]

Epoch number 20000 20000 18000 18000 20000
Training Set Walking Success 26.85% 30.16% 24.27% 21.05% 26.21%
Validation Set Walking Success 27.56% 29.78% 19.11% 13.44% 17.44%
Testing Set Walking Success 14.73% 11.08% 6.88% 7.74% 12.9%
Training Set Approximation Error 5.89 · 10−4 Nm 5.06 · 10−4 Nm 5.43 · 10−4 Nm 5.1 · 10−4 Nm 5.15 · 10−4 Nm
Validation Set Approximation Error 1.02 · 10−3 Nm 1.05 · 10−3 Nm 1.13 · 10−3 Nm 1.2 · 10−3 Nm 8.89 · 10−4 Nm
Testing Set Approximation Error 1.02 · 10−3 Nm 8.61 · 10−4 Nm 8.75 · 10−4 Nm 9.17 · 10−4 Nm 8.84 · 10−4 Nm
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After training, two different tests are applied to measure the competence of

these hybrid networks.

In the first test, trained HNN structures are tested to determine their stable

locomotion controlling capability on training, validation, and testing set configu-

rations in the simulation environment. In detail, neural controllers are tested for

all configurations used in forming data sets independent of the CPG success. In

these simulations, the bias term, excitation input values, and feedback connec-

tions taken from the robot model are given to NN as input. Then, the output

of the neural controller, which consists of six torque values, is given to the robot

model. To avoid over-fitting, neural network weights that perform the highest

validation set walking success percentages throughout the training process are

chosen, and they are utilized to find walking success percentages in other data

sets. After the simulations, robot model movements are evaluated with success-

ful walking criteria, which are determined in data set generation. Then, results

are reported in Table 2.3. Hence, we aim to observe whether the neural con-

troller generates stable locomotion for the cases where CPG is unsuccessful. In

the second test, input sequences in torque control training, validation, and test

data sets are given to the network, and outputs are compared with the desired

output sequence. The mean squared error metric is applied to the difference and

reported as approximation error in Table 2.3. Unlike the first test, the second

test is applied only for patterns where CPG successfully generates stable walking.

In contrast, the first test is applied for each configuration of data sets regardless

of CPG walking success.

The smallest NN architecture consists of one recurrent layer with 50 neurons

and one regression layer with six neurons in Configuration #1. Configuration

#2 includes two recurrent layers different from Configuration #1. While a high

number of recurrent layer utilization is beneficial for decreasing training set ap-

proximation error, it also reduces the test set walking success percentage. Feed-

forward layer addition between recurrent layers is tested with Configuration #3

and #4. A small number of intermediate feedforward neuron utilization gener-

ally becomes more successful than a high number of neuron utilization. Finally,

a high number of neuron utilization in the single recurrent layer is examined in
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Configuration #5. It is interesting to see that approximation error and walking

success percentage metrics do not show high correlation in data sets. Although

Configuration #1 has the highest testing set approximation error, it has the high-

est testing set walking success rate. Moreover, Configuration #1 can be trained

faster than other controller networks because of its small network size. In this

context, Configuration #1 is selected as the most appropriate neural controller

architecture due to its high testing set walking success rate and small network

size. Therefore, this controller architecture is utilized in the continuation of this

study.

2.2.3 Position Controller Implementation

In the second control scenario, NNBCs are assigned to produce limb angles while

taking speed excitation and ramp angle external inputs. Produced limb angles

are tracked by a second closed-loop controller, as shown in Figure 2.8. In this

scenario, NNs are trained via position control data sets extracted from CPG-

driven biped robot walking data, as explained in the previous related subsection.

Since the NN architecture Configuration #1 in Table 2.3 is successfully employed

in torque control scenario which requires relating 32 inputs with 6 outputs, it is

reasonable to assume that the same configuration should also perform sufficiently

well for position control scenario which includes only 3 inputs and 4 outputs.
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Figure 2.8: Position control diagram with closed-loop PID controller
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2.2.3.1 PID Controller Design

In the position control simulations, reference limb angles (θi, i = 1, 2, 3, 4) for

the limbs of biped robot in Figure 2.1 are produced by the neural controller

in feedforward path and joint torques (Tri, i = 1, 2, ..., 6) are calculated with

PID controller as shown in Figure 2.8. To achieve this, four limb angle input

is associated with six torque output by six PID controllers, which use the same

controller parameters, as given in (2.40)-(2.48):

ei[t] = θnni [t]− θi[t], for i = 1, 2, 3, 4, (2.40)

ėi[t] = θ̇nni [t]− θ̇i[t], for i = 1, 2, 3, 4, (2.41)

sei[t] =
t∑

i=0

∆t(θnn1 [i]− θ1[i]), for i = 1, 2, 3, 4, (2.42)

Tr1[t+ 1] =I1(Kpe1[t] +Kise1[t] +Kdė1[t]), (2.43)

Tr2[t+ 1] =I1(Kpe2[t] +Kise2[t] +Kdė2[t]), (2.44)

Tr3[t+ 1] =I1(Kpe1[t] +Kise1[t] +Kdė1[t])

− I2(Kpe3[t] +Kise3[t] +Kdė3[t]), (2.45)

Tr4[t+ 1] =I1(Kpe2[t] +Kise2[t] +Kdė2[t])

− I2(Kpe4[t] +Kise4[t] +Kdė4[t]), (2.46)

Tr5[t+ 1] =I2(Kpe3[t] +Kise3[t] +Kdė3[t]), (2.47)

Tr6[t+ 1] =I2(Kpe4[t] +Kise4[t] +Kdė4[t]), (2.48)

where θnni , i = 1, 2, 3, 4 is the output of neural position controller and θi, i =

1, 2, 3, 4 is the actual limb angles of right upper leg, left upper leg, right lower

leg, left lower leg, respectively. I1 and I2 are inertia of lower and upper legs,

respectively.

First, it is required to determine suitable performance metrics for tuning

controller parameters used in (2.43)-(2.48). In our problem, one intuitive per-

formance metric may be considered as approaching the torque output of CPG

(TCPG
rT
CPG
rT
CPG
r ) with the PID controllers for each of n = 398 training data set patterns
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as:

min
Kp,Ki,Kd

n∑
j=1

N∑
t=1

∆t

2
(T1[t]− T2[t])2

s.t. Kp, Ki, Kd ≥ 0

where T1[t] = TrTrTr
PIDPIDPID(j,Kp,Ki,Kd)[t]

T2[t] = TrTrTr
CPGCPGCPG(j)[t]

T PID
rT
PID
rT
PID
r : Joint torques of PID controller

TCPG
rT
CPG
rT
CPG
r : Joint torques of CPG controller.

(2.49)

Unfortunately, due to the highly nonlinear structure of biped robot dynamics and

CPG, the optimization problem given by (2.49) is not tractable and not efficient

as well for such a tuning process. For this reason, analysis of all walking duration

of PID controlled driven biped robot is chosen to determine appropriate per-

formance metrics. To achieve this, desired robot limb angles (θi, i = 1, 2, 3, 4),

which exist in position control training data set as output data sequence, are

given as reference input to the PID including closed-loop system instead of neu-

ral controller outputs (θnni , i = 1, 2, 3, 4) in Figure 2.8. After the simulation,

walking data is classified as successful or not by using criteria such as minimum

displacement, maximum jumping height, falling, etc. By using these ideas, we

developed a heuristic metric fsuccesss which tries to maximize the successful walk-

ing over the training set patterns, and the associated optimization process could

be given as:

max
Kp,Ki,Kd

n∑
j=1

fsuccess(r, θθθ
(j), Kp, Ki, Kd)

s.t. Kp, Ki, Kd ≥ 0

where r : ramp angle

θθθ(j) : [θ
(j)
1 , θ

(j)
2 , θ

(j)
3 , θ

(j)
4 ].

(2.50)

In this way, the highest success rate is acquired with Kp = 2000, Ki = 400, and

Kd = 150. Therefore these parameters are employed in the PID controllers in the

remaining part of the study.
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2.2.4 Neural Network Replacement of PID Controller

In the third control scenario, PID controller is replaced with neural controllers

as shown in Figures 2.9 and 2.10 as an extension to neural position controller

experiments in feedforward path. Thus, it is aimed to track produced limb angles

by a neural controller in the feedforward path by a second neural controller, which

is in the closed-loop. For this purpose, NN architecture Configuration #1 in Table

2.3 is utilized because of its success in closed-loop torque control problem.

Figures 2.9 and 2.10 show that the proposed closed-loop neural controller con-

figurations take four or eight inputs, respectively. The proposed controller in

Figure 2.9 takes the difference of four reference limb angle values (θθθnn[t]) from

the neural controller in the feedforward path and four biped robot platform limb

angles (θθθ[t− 1]) at time t as input. This classical input scheme is same with the

input scheme of PID controller. Unlike this, the proposed controller in Figure

2.10 takes four reference limb angle values (θθθnn[t]) from the neural controller in

the feedforward path and four biped robot platform limb angles (θθθ[t−1]) at time

t as input, separately. Then, both of the proposed neural controllers calculates

six torque outputs (TrTrTr[t]) at time t.
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Figure 2.9: Position control diagram with closed-loop neural network controller
that takes the difference between reference and feedback inputs.

The PID controller is utilized in the training set generation of the closed-loop

NN over position control training data set patterns. To this end, reference limb

angles, instant biped robot limb angles, and PID torque outputs are recorded

for training patterns. After that, five different neural network configurations
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Figure 2.10: Position control diagram with a closed-loop neural network controller
takes the reference and feedback inputs separately.

are trained as shown in Table 2.4. Among these, LSTM layer or feedforward

layers with hyperbolic tangent activation functions are utilized at hidden layers.

When feedforward neurons are utilized in hidden layers, neuron numbers are

chosen to give a similar number of tunable neural network weights to LSTM

layer utilization. Adam optimizer is utilized in training with a technique similar

to the early stopping method.

Under these conditions, the lowest error rate was obtained with a combination

of L2 = 0, 50 LSTM neurons, and eight separate inputs configuration. This

NN is utilized in position control experiments, and results are reported in the

later subsection. It is interesting to see that, different from the torque control

problem nonzero L2 regularization constant resulted in higher training set error

and lower walking control success than zero L2 training configurations. This

situation may be related to the inability to learn training set patterns with L2

regularization. Moreover, neural network configuration with eight inputs (Config.

#2) in Figure 2.10 reaches higher performance than neural network configuration

with four inputs (Config. #1) in Figure 2.9 as reported in Table 2.4. For this

reason, the neural network configuration with eight inputs is employed in the

remaining studies on the neural network replacement of the PID controller.
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Table 2.4: Neural replacement of PID controller trials

Config. #1 Config. #2 Config. #3 Config. #4 Config. #5

Learning constant 0.001 0.001 0.001 0.001 0.001
L2 constant 0 0 0.05 0 0
Mini-batch size 199 199 199 199 199
Hidden layer number 1 1 1 2 4
Neuron number at each hidden layer 50 50 50 103 61
Hidden layer neuron type LSTM LSTM LSTM FNN (tanh) FNN (tanh)
Neural network input number 4 8 8 8 8
Regression layer neuron number 6 6 6 6 6
Epoch number 27000 51000 60000 15000 10000
Training set walking success percentage 64.6% 75.4% 0% 39.27% 31.85%
Validation set walking success percentage 64.78% 68% 0% 35.44% 33.22%
Testing set walking success percentage 46.34% 55.48% 0% 30.22% 22.37%
Training set approximation error (Nm) 5.33 · 10−5 5.17 · 10−5 3.7 · 10−4 5.2 · 10−4 5.2 · 10−4

Validation set approximation error (Nm) 5.57 · 10−5 5.47 · 10−5 3.76 · 10−4 5.26 · 10−4 5.26 · 10−4

Testing set approximation error (Nm) 5.3 · 10−5 5.21 · 10−5 3.59 · 10−4 5.1 · 10−4 5.11 · 10−4
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2.3 Results and Discussion

In this section, proposed NNBCs’ stable locomotion controlling capacity with a

biped robot platform is evaluated under varying ground conditions and various

metrics. Then, NNBCs are compared with each other and the CPG controller,

which is utilized in training set generation. Finally, the simulation results are

discussed.

2.3.1 Torque Control Simulations

The generalization capability limits of the proposed NNBC architecture are in-

vestigated using different L2 regularization constants and mini-batch sizes at the

training stage. Mini-batch size (M) means the number of patterns utilized to up-

date network weights together. L2 regularization is a weight decay method that

is employed to improve the generalization capability of the network, see e.g., [83].

Employed mini-batch sizes and L2 regularization constants are given in Table

2.5. NN parameters are recorded at specific epoch intervals during training. Af-

ter completing the training stage, the recorded network parameters are used to

measure the capability of stable gait generation on the training, validation, and

testing data set configurations.

Reported success rates in Table 2.5 are obtained by performing walking simu-

lation for each ramp angle and speed excitation value combinations given in Table

2.2. For this reason, reported success rates for each data set need to be compared

by CPG values in Table 2.2 while concluding about the superiority of proposed

NNBC architectures. To this end, the NN training configurations that achieved

higher success than the CPG are marked in bold in Table 2.5. Note that CPG is

utilized in obtaining the data set with which the NNs are trained. Clearly, the

higher performance of neural controllers compared to CPG is a result of their

generalization ability.

The highest validation set walking success percentage is obtained for L2 = 0.5
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Table 2.5: NN driven walking success comparison for torque control scenario

Data Set
Mini-Batch Size

M=1 M=40 M=199

L2 = 0
Training 29.03% 27.9% 30.4%
Validation 24.44% 14.11% 18.44%
Testing 11.51% 10.32% 9.68%

L2 = 0.0005
Training 28.06% - -
Validation 19.44% - -
Testing 12.04% - -

L2 = 0.005
Training 28.55% 30.73% 24.44%
Validation 28.11% 18.56% 17.67%
Testing 17.96% 15.16% 11.29%

L2 = 0.05
Training 14.76% 35.65% 48.47%
Validation 35% 13.44% 22.33%
Testing 24.41% 15.81% 23.66%

L2 = 0.5
Training 4.19% 44.35% 53.06%
Validation 10.89% 30.44% 31.22%
Testing 2.69% 25.91% 33.55%

and M = 199 configuration. The NN controlled walking success rate changes

throughout the training process, as shown in Figure 2.11. One reason for it could

be the emergence of the over-fitting problem in the following stages of training.

The NN weights that provide the highest validation set walking success rate are

chosen from recorded network weights for each training configuration to avoid this

problem. Then, selected network weights are employed to reach reported walking

success percentages on training, validation, and testing data sets in Table 2.5.

Thus, the problem of over-fitting is avoided by applying a technique similar to

early stopping.

The training configuration of L2 = 0.5 and M = 199 reached the highest suc-

cess in all data sets at the 4000th epoch. Therefore, the NN which uses these

weights is found as the best torque controller, and it is referred to as “selected con-

troller” in the remaining part of the subsection. The mean squared error between

torque outputs of CPG and the selected controller is given for each training, val-

idation, and testing data set pattern in Figure 2.12 to examine the performance
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Figure 2.11: Walking success change of selected neural controller on data sets
during training

of the selected controller. When Figure 2.12 is examined, it is observed that

the difference between the two controller outputs is higher for patterns at the

outer boundaries of the data sets. It is also observed that the selected controller

is more sensitive to the change of ramp angle than the speed excitation value

changes. The difference between the two controllers tends to increase for high

speed excitation and ramp angle value combinations.

To understand the effect of observed differences between controllers on the

locomotion controlling performance, walking tests are performed in the simulation

environment for ramp angle and speed excitation configurations shown in Figure

2.13. As can be seen in Figure 2.13, the selected controller has higher success

than CPG in all data sets. In detail, the selected controller reaches higher walking

success compared to the CPG for downhill ramp angles in the training, validation,

45



Figure 2.12: Calculated torque output difference between CPG and the selected
controller for all patterns in each data set
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and test data sets. Similarly, the selected controller shows higher success than

CPG for uphill ramp angles in the training and testing data sets. CPG offers

higher success for uphill ramp angles than the selected controller in the validation

data set. In this context, the increasing difference between the selected controller

and the CPG for patterns at the outer boundaries of data sets in Figure 2.12

apparently contributes positively to the walking control performance.

To evaluate the noise rejection performance of the selected controller, the walk-

ing success of the selected controller and CPG have been compared under rough

terrain conditions. For this purpose, zero mean and unit variance Gaussian dis-

tribution is employed in the generation of the random numbers to make the rough

terrains used in the simulation environment. Nine different walking surfaces with

varying roughness levels have been modeled using the same random numbers to

ensure equal conditions between experiments. To achieve this, random numbers

are scaled with the multipliers in [0 0.001 0.002 0.005 0.01 0.015 0.02 0.03 0.04]

array. Then, scaled random numbers are added to the height of the walking

surface at 0.1 meter-wide intervals to obtain rough terrain. After that, manu-

factured rough terrain models are added to the inclined ground model on which

the selected controller and CPG-driven robot move. The variation of the walking

success of the robot platform, which is driven by the selected neural controller

and CPG, operated under these conditions depending on the level of ground

roughness is shown in Figure 2.14 and Table 2.6. For each roughness level, the

selected controller reached equal or higher walking success rates than CPG at all

data sets, and higher success rates are marked in bold in Table 2.6. As shown

in Figure 2.14, both controllers form a monotonically decreasing walking success

for roughness multipliers of 0.002 and above. It is seen that the selected neural

controller and the CPG cannot perform successful locomotion on any data set for

roughness multipliers of 0.04 and above.
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Figure 2.13: Successful locomotion generation capability of selected controller
and CPG for different ramp angle and speed excitation value combinations in the
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Table 2.6: Rough terrain torque control experiments

Roughness Data Configuration

Multiplier Set CPG NN

0
Training 32.1% 53.06%
Validation 21.67% 31.22%
Testing 15.91% 33.55%

0.001
Training 34.92% 54.68%
Validation 22.56% 30.78%
Testing 17.1% 31.61%

0.002
Training 34.84% 53.31%
Validation 23.22% 29.78%
Testing 17.42% 31.29%

0.005
Training 30.4% 48.47%
Validation 21.33% 25.44%
Testing 15.38% 25.81%

0.01
Training 17.42% 32.58%
Validation 11.67% 16.67%
Testing 8.17% 17.31%

0.015
Training 6.37% 14.6%
Validation 4.44% 8.44%
Testing 3.23% 8.71%

0.02
Training 2.58% 6.85%
Validation 1.22% 2.56%
Testing 1.4% 4.95%

0.03
Training 0.08% 0.16%
Validation 0% 0%
Testing 0% 0.43%

0.04
Training 0% 0%
Validation 0% 0%
Testing 0% 0%
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Figure 2.14: Successful walking percentages of the selected controller and CPG
for different roughness multipliers

2.3.2 Position Control Simulations

The generalization capability limits of the NN controller in the feedforward path

architecture are investigated with the utilization of different L2 regularization

constants and mini-batch sizes in the training process. Employed mini-batch

sizes and L2 regularization constants are given in Table 2.7. NN parameters are

recorded at specific epoch intervals during training. After completing the training

stage, the recorded network parameters are used to measure the successes of stable

gait controlling in training, validation, and testing data sets. During locomotion

tests, the PID controller is utilized in the closed-loop.

The highest validation set walking success rate is obtained for L2 = 0.05 and

M = 199 configuration. The NN controlled walking success rate changes through

the training process, as shown in Figure 2.15. As compared to Figure 2.11, now

we have more oscillatory behavior in the success rate change during training. The
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Table 2.7: NN driven walking success comparison for position control scenario

Data Set
Mini-Batch Size

M=40 M=199

L2 = 0
Training 59.76% 49.03%
Validation 46% 45.56%
Testing 41.61% 34.84%

L2 = 0.005
Training 62.1% 53.15%
Validation 53% 44.56%
Testing 37.96% 40.75%

L2 = 0.05
Training 68.87% 71.69%
Validation 56.22% 64.67%
Testing 38.39% 55.16%

L2 = 0.5
Training 39.35% 69.84%
Validation 22.67% 39.56%
Testing 14.62% 31.08%

network weights that provide the highest validation set walking success rate are

chosen from recorded network weights for each training configuration to avoid the

over-fitting possibility. After that, selected network weights are used to obtain

walking success percentages on training, validation, and testing data sets given

in Table 2.7. In Table 2.7, the NN training configurations that achieved higher

success than the CPG are marked in bold. Note that CPG is utilized in obtaining

the training data set. Clearly, the better performance of neural controllers as

compared to CPG is a result of their generalization ability over all data sets.

Therefore, NN that uses weights for configuration of L2 = 0.05 and M = 199

at the 37500th epoch is the best position controller, and it is referred to as the

“selected controller” in the remaining part of the subsection.

To examine the performance of the selected controller, the mean squared er-

ror between limb angle trajectories of the CPG controlled robot model and the

selected controller outputs is given for each training, validation, and testing data

set pattern in Figure 2.16. When Figure 2.16 is examined, it is observed that

the difference between the two controller outputs is higher for patterns at the

outer boundaries of the data sets and patterns at the speed excitation values in
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Figure 2.15: Walking success change of selected neural controller on data sets
during training

the range of [6.5 9]. It is also observed that the selected controller is sensitive to

the change in ramp angle and the speed excitation value changes. The difference

between the two controllers tends to increase for high speed excitation and ramp

angle value combinations.

The selected controller has higher success than CPG in all data sets, as shown

in Figure 2.17. In detail, the selected controller reaches higher walking success

than the CPG for uphill and downhill ramp angles in all data sets. Similarly, the

selected controller also shows higher success than CPG for high and low-speed

excitation values in all data sets. It is observed that for some speed excitation

values in the range of [6 7.5] selected controller failed, as can be seen in Figure

2.17. When the reasons for this behavior are examined, it is seen that for these
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Figure 2.16: Calculated limb trajectory difference between CPG controlled robot
model and the selected controller output for all patterns in each data set
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speed excitation values, the robot platform shows similar behaviors to jumping

instead of walking. This behavior may possibly be due to the PID controller

structure used to control the robot platform. This problem may possibly be

solved by optimizing the PID controller given in equations between (2.40)-(2.48).

Another possible reason for jumping behaviors may be related to observed high

mean squared error rates for some speed excitation values in the range of [6.5

8] in Figure 2.16. On the other hand, the increasing difference between selected

controller output and CPG-controlled robot limb trajectories for the patterns at

the outer boundaries of data sets in Figure 2.16 apparently contributes positively

to the walking control performance.

2.3.3 PID Replacement Simulations

In the third control scenario, the PID controller is replaced with a NNBC as an

extension to the second scenario. Thus, the selected controller in the feedforward

path is utilized together with closed-loop NNBC instead of the PID controller.

The training configuration of L2 = 0 and M = 199 reached the highest success

in the validation set at the 51000th epoch. Therefore, the NN which uses these

weights is found as the best controller, and it is referred to as the “selected con-

troller” in the remaining part of the subsection. The mean squared error between

torque outputs of PID and the selected controller is given for each training, val-

idation, and testing data set pattern in Figure 2.18 to examine the performance

of the selected controller. When Figure 2.18 is examined, it is observed that the

difference between the two controllers tends to increase for combinations of high

speed excitation and low ramp angle values.

In order to understand the effect of observed differences between controllers

on the locomotion controlling performance, walking tests are performed in the

simulation environment for ramp angle and speed excitation configurations shown

in Figure 2.19. As can be seen in Figure 2.19, the selected controller has higher

success than CPG in all data sets. In detail, the selected controller shows higher

success than CPG for uphill ramp angles in the training, validation, and testing
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and CPG for different ramp angle and speed excitation value combinations in the
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Figure 2.18: Calculated torque output difference between PID and the selected
controller for all patterns in each data set
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data sets. Similarly, the selected controller reaches higher walking success than

the CPG for high and low speed excitation values in all data sets.

In order to analyze the robustness of the proposed NNBC, CPG controller,

selected controller with PID (NN+PID; Figure 2.8) and selected controller with

closed-loop neural controller (NN+NN; Figure 2.10) have been tested on rough

terrain conditions which are the same with the torque control rough terrain exper-

iments and results are given in Table 2.8. For each roughness level, the selected

controller with configuration in Figure 2.8 and 2.10 reached equal or higher walk-

ing success rates than CPG at all data sets. Among two configurations of the

selected controller, closed-loop neural controller utilization in Figure 2.10 mostly

reaches higher success rates for roughness multiplayer of 0.01 and below. After

this level, PID utilization as closed-loop controller in Figure 2.8 generally give bet-

ter results on data sets. Here, we note that NN is trained with flat terrain data,

but nevertheless, it still shows acceptable performance for rough terrain walking.

This behavior may also be related to the generalization ability of NNBCs.

When controller performance on position control scenario in Figure 2.8 and

2.10 and closed loop controller performance on torque control scenario in Figure

2.7 are compared with each other, position control structure given in Figure 2.10

performs better than the other configurations. In addition to this, for the high

roughness multiplier values position control structure given in Figure 2.10 is less

successful compared to PID controller.

2.3.4 Controller Sensitivity Analysis

In most control applications, there are differences between the mathematical

model used to design the controller and the actual plant that needs to be con-

trolled, so good controllers should work in a harmonious and resistant way against

slight variations in plant dynamics and external disturbance, respectively. This

subsection reports sensitivity analysis of proposed NNBCs against changing robot

weight in the simulation environment. To this end, it is decided to increase the
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Table 2.8: Rough terrain position control experiments

Roughness Data Configuration

Multiplier Set CPG NN+PID NN+NN

0
Training 32.1% 71.69% 75.4%
Validation 21.67% 64.67% 68%
Testing 15.91% 55.16% 55.48%

0.001
Training 34.92% 71.94% 75.4%
Validation 22.56% 64.33% 67.89%
Testing 17.1% 54.84% 55.38%

0.002
Training 34.84% 71.53% 74.76%
Validation 23.22% 64% 67.33%
Testing 17.42% 54.52% 54.09%

0.005
Training 30.4% 69.44% 73.06%
Validation 21.33% 61.78% 65.78%
Testing 15.38% 54.19% 52.26%

0.01
Training 17.42% 62.98% 67.26%
Validation 11.67% 57.78% 58.89%
Testing 8.17% 49.78% 47.1%

0.015
Training 6.37% 56.05% 58.06%
Validation 4.44% 52% 48.11%
Testing 3.23% 41.94% 40%

0.02
Training 2.58% 49.6% 44.35%
Validation 1.22% 41.11% 37.89%
Testing 1.4% 35.91% 31.94%

0.03
Training 0.08% 25.24% 23.31%
Validation 0% 22% 19.67%
Testing 0% 11.61% 17.2%

0.04
Training 0% 0% 0%
Validation 0% 0% 0%
Testing 0% 0% 0%
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weight of each mass on the robot model and compare the resulting walking suc-

cess rates for CPG and proposed NNBCs. This analysis can be thought of as

another way of checking the existence of over-fitting to robot model dynamics in

the simulation environment.

NNBCs are not retrained to satisfy fair comparison with weighted robot models

during this analysis. In order to analyze the sensitivity of the proposed NNBCs,

CPG controller, selected controller for torque control scenario (NN; Figure 2.7),

selected controller with PID for position control scenario (NN+PID; Figure 2.8)

and selected controller with closed-loop neural controller for position control sce-

nario (NN+NN; Figure 2.10) have been tested with increasing robot model weight

and obtained results are given in Table 2.9. For each data set and robot weight

increase level, the highest walking success rates are marked in bold in Table 2.9.

The selected NNBCs reached higher walking success rates than CPG at all data

sets for each weight level. Among three configurations of the selected controllers,

the selected controller with a closed-loop neural controller for the position con-

trol scenario (NN+NN; Figure 2.10) reaches the highest training and validation

data set performances. Later, selected controller with PID for position control

scenario (NN+PID; Figure 2.8) reaches the highest testing data set performance.

Finally, the selected controller for the torque control scenario (NN; Figure 2.7)

outperforms CPG for each weight increase percentage, but it reaches lower walk-

ing success rates than position controllers, similar to rough terrain experiment

results. These results may be related to the generalization ability of NNBCs.

2.3.5 Joint Torque Limitation Analysis

Successful real-life implementations of legged locomotion control algorithms have

to work harmoniously with various physical constraints of the robot plant, such

as actuator torque and speed limitations. For this reason, a locomotion control

algorithm needs to be able to work under some constraints with adequate per-

formance. To this end, we applied torque optimization to proposed NNBCs, and

we tested CPG and NNBCs under torque limitation, which is the 25% of the
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Table 2.9: Robot weight increase experiments

Configuration

Robot Data CPG Torque Position Position
Weight Set Controller Controller Controller
Increase (NN) (NN+PID) (NN+NN)

0%
Training 32.1% 53.06% 71.69% 75.4%
Validation 21.67% 31.22% 64.67% 68%
Testing 15.91% 33.55% 55.16% 55.48%

2%
Training 31.29% 54.11% 71.05% 75%
Validation 21.78% 29.89% 63.56% 67.67%
Testing 15.81% 32.9% 54.84% 54.73%

4%
Training 31.13% 54.11% 70.16% 74.44%
Validation 20.67% 28.22% 62.89% 67%
Testing 14.62% 31.29% 53.01% 53.44%

5%
Training 30% 53.15% 69.52% 74.84%
Validation 20.89% 27.89% 62.33% 66.89%
Testing 14.84% 31.4% 52.37% 52.9%

6%
Training 29.35% 54.44% 68.79% 74.27%
Validation 19.67% 25.22% 61.33% 67.11%
Testing 14.19% 30.86% 52.58% 51.94%

8%
Training 27.74% 52.34% 67.74% 73.63%
Validation 18.89% 24% 61.11% 65.44%
Testing 13.76% 28.71% 50.75% 49.78%

10%
Training 26.37% 50.73% 67.02% 72.42%
Validation 18% 22.22% 59.44% 64.22%
Testing 13.23% 26.67% 49.68% 48.71%

15%
Training 20.4% 43.47% 63.47% 69.27%
Validation 13.56% 16.89% 55.22% 61%
Testing 9.68% 23.23% 46.02% 43.66%

20%
Training 14.52% 33.63% 57.66% 64.19%
Validation 10.56% 13.78% 50.56% 55.11%
Testing 7.31% 17.63% 41.83% 37.63%

25%
Training 9.03% 27.5% 47.74% 53.71%
Validation 6.11% 9.11% 42.89% 47.22%
Testing 4.41% 14.09% 35.38% 30.43%

61



highest joint torques generated by the CPG controller during the generation of

the training data set.

To make a fair comparison, CPG is run for training, validation, and testing set

ramp angle and excitation value combinations under the aforementioned torque

limitation, and resulting success rates are given in Table 2.10. For the same

purpose, the selected controller for the torque control scenario (NN; Figure 2.7)

is trained for mini-batch size 199 and various L2 regularization constants by

using the original training set patterns that are truncated with respect to torque

limit again. Later on, the selected controller with PID for the position control

scenario (NN+PID; Figure 2.8) is optimized by reselecting PID coefficients. To

this end, optimization in (2.50) is repeated under torque limitation. In this way,

the highest success rate is acquired with Kp = 4500, Ki = 0, and Kd = 600. After

that, the selected controller with a closed-loop neural controller for the position

control scenario (NN+NN; Figure 2.10) is trained for mini-batch size 199 by

using the original training set patterns that are truncated with respect to torque

limit again. Finally, optimized NNBCs were tested under torque limitation, and

resulting success rates are reported in Table 2.10. The NNBCs that achieved

higher success than the CPG are marked in bold in Table 2.10.

Under the 25% joint torque limitation, CPG and selected controller for torque

control scenario encounter a decline in gait control success, but the neural con-

troller outperformed the CPG for L2 regularization constant 0.05 over all data

sets. Interestingly, the selected controller with PID for the position control sce-

nario reaches even higher success rates than its unlimited joint torque perfor-

mances. This success increase may be related to the under-optimized situation of

the PID controller. Similar to the torque control scenario, the selected controller

with a closed-loop neural controller for the position control scenario encounters

a decline in walking control success. Still, the neural controller outperformed

the CPG again. Based on this data, it may be concluded that proposed NNBCs

outperform CPG for 25% joint torque limitation constraint, and they may work

under constraints with various success rates.
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Table 2.10: Joint torque limitation experiments
Configuration

Data CPG Torque Position Position
Set Controller Controller Controller

(NN) (NN+PID) (NN+NN)
(L2 = 0) (L2 = 0.005) (L2 = 0.05) (L2 = 0.5) (L2 = 0.05) (L2 = 0)

Training 26.77% 27.5% 27.18% 37.58% 6.13% 92.26% 51.94%
Validation 18.78% 13% 21.67% 22.11% 3.78% 83.11% 49.22%
Testing 15.59% 7.74% 21.29% 26.67% 2.04% 68.39% 40.54%

2.3.6 Stability Analysis

Bipedal locomotion stability analysis is a complex problem due to utilized highly

nonlinear robot models and the diversity of gait types. For this reason, various

ways of measuring walking stability are proposed in the literature [10–13,84].

These methods generally impose artificial constraints on walking at various levels,

such as static walking. Unfortunately, these constraints may negatively affect the

performance of locomotion in terms of speed, efficiency, disturbance rejection,

etc. metrics [84].

To avoid these side effects, we classify stable locomotion patterns by measuring

average walking velocity, hip height and detecting falling events as explained in

Subsection 2.2.1. In this way, the least amount of artificial constraints have been

imposed on the walking in this study. Even though center of gravity (COG), zero

moment point (ZMP), and limit cycle analyses impose some artificial constraints

to gait and some of them cannot be fully applicable because of point feet of the

employed robot model in this study, they still may help us to understand the

behavioral characteristic of proposed NNBCs. For this reason, we utilize COG,

ZMP, and limit cycle analyses in this subsection.

The employed robot model has point feet, so a support polygon does not exist

in the single support phase. To make an analysis similar to COG and ZMP, we re-

define support polygon as the distance between horizontal projections of feet onto

the flat surface independently from ground contact. Even under this assumption,

support polygon shrinks to a single point when feet are aligned vertically. With

this assumption, we track COG and ZMP throughout walking and calculate the
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percentage of walking duration that satisfies COG and ZMP stability criteria.

Table 2.11 lists COG and ZMP stability criteria satisfied walking duration per-

centages for CPG and proposed NNBCs on each data set. It is important to note

that these analyses are performed only for successful walking patterns.

In terms of Table 2.11, proposed NNBCs have a lower COG stability criteria

satisfying percentage than CPG. Among NNBCs, position controllers satisfy COG

stability criteria for a slightly lower percentage than the torque controller. Based

on this finding, it can be concluded that NNBCs may perform less statically

stable locomotion than CPG, and this situation can be related to the increasing

locomotion success of NNBCs. Unexpectedly, ZMP stability criteria are fulfilled

for slightly shorter durations than COG, as shown in Table 2.11. When we

seek the possible reasons, we determine that ground reaction forces generated

at the stance phase of the associated leg include high amplitude fluctuations.

This situation causes noise in the second derivatives of state variables utilized

in the calculation of ZMP. When trajectories of ZMP are analyzed, it is seen

that ZMP oscillates to the back and front of the support polygon and does not

diverge from the support polygon permanently. The highest ZMP percentages are

observed for torque controller NNBCs, and the lowest percentages are acquired

for position controller NNBCs. Unfortunately, noise arising from ground reaction

forces prevents further analysis of our control scenarios.

Another method of determining the stability of legged locomotion is the well-

known limit cycle analysis. It imposes fewer constraints on the gait compared

to COG and ZMP methods, [84]. Thus, more efficient and natural gaits can be

classified as stable walking. In detail, trajectories of the state variables in the

successive steps generate closed trajectories which are called limit cycles in state

space, see e.g., [15, 84].

To analyze the characterization of limit cycles, the Poincaré section which is

a subset of system states at step n is taken as follows for our case:

hhh[n] = [x2[n], ẋ1[n], ẋ2[n]]T . (2.51)

Here, we take Poincaré section when the right thigh is in front of the hip, and
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Table 2.11: Center of gravity (COG) and zero moment point (ZMP) analysis for
NN driven walking scenarios

Data Set COG ZMP

Training 88.23% 47.14%
CPG Validation 88.02% 47.40%

Testing 88.45% 47.47%

Torque Training 86.77% 50.69%
Controller Validation 84.38% 52.38%
(NN) Testing 85.41% 50.29%

Position Training 80.25% 43.77%
Controller Validation 83.08% 42.63%
(NN+PID) Testing 76.50% 39.04%

Position Training 82.27% 42.00%
Controller Validation 81.35% 39.99%
(NN+NN) Testing 76.15% 36.62%

the hip is in the highest position during a step. We describe this combination as

an apex point. Poincaré sections of successive apex points can be mapped by a

stride function ‘SSS(.)’ as shown below:

hhh[n+ 1] = SSS(hhh[n]). (2.52)

For a stable periodic motion that converges to a limit cycle, there are fixed

points of SSS function such as hhh∗ and it repeatedly passes from these fixed points

between consecutive steps which satisfy the following:

hhh∗ = SSS(hhh∗). (2.53)

Then stability of the limit cycle can be determined by linearizing function SSS

around the fixed point hhh∗ as given below:

SSS(hhh∗ + ∆∆∆hhh) = hhh∗ +DDD∆∆∆hhh, (2.54)

where ∆∆∆hhh = [∆x2 ,∆ẋ1 ,∆ẋ2 ]
T is a small deviation vector and DDD is the Jacobian

matrix which consists of partial derivatives of SSS function with respect to states

variables in the Poincaré section. If the eigenvalues of the Jacobian matrix are

found within the unit circle, it means the limit cycle is locally stable.
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Unfortunately, the highly nonlinear model of the biped robot model and con-

trollers do not let us calculate the Jacobian analytically. Under these conditions,

a popular way of evaluating the Jacobian is using numerical methods, see e.g.,

[15, 84,85]. The partial derivatives in Jacobian matrix DDD are calculated with

numerical methods as explained in [85]. As an example of this approach, we

considered a simple successful walking configuration of 0 degree ramp angle and

6.41 excitation value. In this way, limit cycles of the CPG and NNBCs driven

biped robot models for the selected walking patterns, which are shown in the Fig-

ure 2.20, are analyzed, and eigenvalues of corresponding Jacobian matrices are

reported in Table 2.12. All eigenvalues are found in the unit circle as expected,

which is in line with the results of the rough terrain experiments. Moreover, eigen-

values with the lowest amplitude are found in CPG, which may be interpreted as

CPG showing faster recovery characteristics against applied perturbation. This

observation is also in line with the stability expectations stated in [30], but such

a limit cycle calculation was not performed there. Among NNBCs, the torque

controller has the highest eigenvalue amplitude, and this is in line with the obser-

vation of slow recovery and lower walking success rates than position controller

NNBCs.

Table 2.12: Computed eigenvalues via the limit cycle analysis for success walking
patterns obtained by each controller. Note that these eigenvalues are computed
for walking 0 degree ramp angle and 6.41 excitation value walking conditions. All
controllers acquire successful locomotion for this ramp angle and excitation value
pair.

Configuration

CPG Torque Position Position
Controller Controller Controller
(NN) (NN+PID) (NN+NN)

Eigen Values
−0.0954 0.585 −0.3113 −0.3790− 0.2750i
0.13 −0.0913 0.0857 −0.3790 + 0.2750i
0.0502 −0.0062 0.0062 0.0008
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Figure 2.20: Limit cycle trajectories of CPG and proposed NNBCs driven biped
robot model hip states. Blue and orange lines show (x2, ẋ2) and (x2, ẋ1) limit
cycle trajectories, respectively. Note that these limit cycles are generated for 0
degree ramp angle and 6.41 excitation value. All controllers acquire successful
locomotion for this ramp angle and excitation value pair.

2.3.7 Discussion

The over-fitting issue is undesired and needs to be avoided to increase the real

performance of the machine learning algorithms. To avoid this, three separate

data sets named training, validation, and test sets are produced by using CPG

driven robot model. While producing these sets, speed excitation and ramp angle

values are selected from relatively close range. However, data set patterns are

placed far enough from each other to show diversity which can be observed by

examining Figure 2.11 and 2.15. In this way, the success rate of neural controllers

changes in different directions on different data sets throughout the training pro-

cess. Moreover, it is very common that neural controllers show changing success

rates on each data set for different training configurations as shown in Table 2.5,

2.7 and 2.8. In addition to these, trained neural controllers can perform stable

locomotion for speed excitation and ramp angle values that do not exist in any of
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these three data sets. Thus, it is validated that generated three data sets carry

the necessary properties to avoid the over-fitting problem. Another important

issue is the success differences between training, validation, and testing data sets.

In the generation of data sets, different intervals of speed excitation and ramp

angle values were employed to analyze behaviors of NNBC in larger input ranges.

For this reason, successful locomotion percentages show diversity, as explained

in the data set preparation subsection. While the highest walking success is ob-

tained in the training data set, the testing data set reaches the lowest success

percentage due to enlarging input intervals.

During NNBC-driven biped locomotion experiments, the feedback taken from

the robot and environment are given to NNBCs, so inputs diverge from training

set inputs starting from the first control output, which is different from CPG

output. These dynamics may cause misunderstanding that NN training does not

converge throughout the training process, as seen in Figure 2.11. In fact, NNBC

successfully learns the relation between input and output data in the training

set. Since walking simulations are performed with different inputs from inputs of

data sets, first learning and then over-fitting occurs as shown in Figure 2.11.

Even though NNs are highly nonlinear structures, they reach a very high gen-

eralization performance in walking experiments. Significantly, L2 regularization

contributed positively to walking success generalization. For instance, 30 of 32

inputs given to the neural controller are calculated during locomotion simula-

tions in the torque control scenario, but NNBC can interpret these previously

unseen inputs to produce required torque values for stable walking. Similarly,

the neural controller reaches more than two times higher walking success for

speed excitation and ramp angle combinations employed in data set generation

at the position control experiments. In addition to these, the generalization suc-

cess of NNs is also validated with rough terrain, robot weight increase, and joint

torque limitation experiments. Although neither CPG nor neural controller is

trained in rough terrain environments, there are significant walking success dif-

ferences between them in rough terrain environments. Differences generally tend

to increase with increasing roughness. In a similar way, neural controllers out-

perform CPG in robot weight experiments, and success differences increase with
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increasing robot weight. It is interesting to see that proposed NNBCs become

more successful in position control scenarios than in torque control scenario. The

main reason for this difference may be related to simplifying the legged locomo-

tion problem by separating it into joint torque calculation and limb trajectory

planning subparts similar to hierarchical control. Thanks to this separation, one

NNBC interpolates limb angles while the other focuses on torque generation for

biped locomotion control. After that, the successful walking generation ability of

the NNBCs is tested under the torque limitation constraint, and NNBCs outper-

form the CPG again. Hence, we see that the proposed NNBCs can be optimized

to work in small torque intervals, and this ability may ease their usage in real-life

biped locomotion control applications.

Remark 1 Unlike the acquired generalization success with L2 regularization,

Dropout is another well-known regularization technique that does not enhance

neural controller performance for every control scenario, see [86]. To measure the

performance increment that can be obtained with the dropout method, we retrain

torque and position controller neural networks with their best training configura-

tions by adding 0.1 and 0.2 dropout rates to the output of the LSTM layer. In our

simulations, dropout does not increase the success rates for torque controller, but

some improvement is observed in certain cases for position controller, as shown

in 2.13. Obviously, this point deserves further investigation. This situation may

be related to limited layer numbers in our proposed neural network architecture.

We think that the dropout method would be more beneficial for the performance

of neural networks if we utilized a larger number of feedforward layers. �

Due to the limited parameter space of CPG, it has limited adaptability to

biped robot dynamics than NNBC. Even though Matsuoka oscillator is capable of

sustaining oscillations, NNBC is more successful in evaluating the feedback taken

from the robot model and environment. Moreover, it seems that the LSTM layer

in NNBC is capable of tracking phase changes of hybrid dynamics of the biped

robot platform thanks to the internal structure of the LSTM neuron model. The

information carried by the cell state can be easily modified or preserved with

linear interactions between time steps. Moreover, the nonexistence of nonlinear
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Table 2.13: Results of dropout regularization technique implementation on new
neural network-based controller training trials

Mini-Batch L2 Dropout Training Validation Testing
Size Constant Rate Set Set Set

CPG - - - 32.1% 21.67% 15.91%

Torque 199 0.5 0 53.06% 31.22% 33.55%
Controller 199 0.5 0.1 31.94% 25.33% 16.67%
(NN) 199 0.5 0.2 37.58% 26.11% 19.14%

Position 199 0.05 0 71.69% 64.67% 55.16%
Controller 199 0.05 0.1 73.79% 65.78% 52.15%
(NN+PID) 199 0.05 0.2 77.1% 54.44% 57.2%

operation in the cell state line helps to avoid gradient vanishing type problems

which may be seen in RNN training, see [81].

Remark 2 We perform further tuning on CPG parameters to test our assump-

tion about the dependence of the generalization ability of neural networks on the

tuning level of CPGs. Thus, we enlarge the walkable ramp angle range from [-

6.53, 6.53] to the [-8.18, 9.55] degree interval for the training set walking patterns.

That means an approximately 35.8% increase in the ramp angle range of CPG.

A somewhat summary of our simulations by using the patterns generated by the

improved CPG parameters are listed in Table 2.14. Here, we train torque con-

troller, position controller, and PID replacement neural networks by using found

best training configurations in previous experiments. All of them reach higher

success rates than CPG, as expected. As can be seen, although the CPG success

rates have increased, so are the NN-based controller performances, which was one

of the main results of our work. �

Feedforward layers are employed in the classical neural network-based con-

trollers due to their quick training ability. However, feedforward layers do not

have a dynamic structure, so they may require several previous time step infor-

mation from the controlled plant in the closed-loop control schemes. In addition,

the number of required time steps may increase with nonlinearities in the plant.

In our proposed structures, the recurrent layer eliminates the need for previous

time step information. We employed fully feedforward neural networks with 3
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Table 2.14: Results of CPG tuning experiments and new neural network-based
controller training trials

Excitation Ramp Improved Torque Position PID
Value Angle CPG Controller Controller Replacement
Interval Interval Walking Neural Neural Neural

Percentage Network Network Network
Walking Walking Walking
Percentage Percentage Percentage
(L2=0.5) (L2=0.05) (L2=0)

Training [3 10] [−10◦ 10◦] 31.22% 45.17% 55.94% 48.5%
Validation [2 11] [−11◦ 11◦] 22.58% 30.42% 46% 40.75%
Testing [1 12] [−12◦ 12◦] 16.67% 27.42% 43.01% 36.34%

and 5 layers that have similar parameter counts with our proposed NNBC for

position control scenarios as an ablation analysis work to see the importance of

recurrent connections in the proposed NNBC, see e.g., [87]. As shown in Table

2.4, fully feedforward neural networks could not succeed in providing successful

legged locomotion as much as proposed NNBCs. As a result of this ablation

analysis, we see that fully feedforward neural networks are not suitable for the

same schemes that we used for the proposed NNBC that includes a LSTM recur-

rent neural layer. We think that when previous time inputs are added to these

feedforward controllers, their success rates will increase, but the number of the

required time steps is unknown, and it may increase for hybrid dynamical sys-

tems such as biped robots. On the other hand, the inclusion of previous time

step information requires placing a higher number of network parameters in the

input layer. So, the total neuron count will decrease in the feedforward neural

network, and this situation will also limit the performance of the controller. For

these reasons, using the LSTM neuron model in the recurrent layer also seems

efficient in terms of the number of parameters.

Note that the LSTM neuron model is developed as a memory unit, so its math-

ematical operation modeling capability is limited. When the internal structure

of the LSTM neuron model is examined, it is seen that there is no derivative

block to determine the rate of change at the error signal and integrator block to

accumulate the error signal. Unlike the PID controller, these mathematical op-

erations have to be performed in-between time steps by collaborating with other

LSTM cells at the recurrent layer. To organize this collaboration, significant
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numbers of network weight need to be adjusted, and this parameter adjustment

may take long training durations. As a remedy to this weakness, the closed-loop

control performance of the LSTM cell may be increased with internal structural

modifications such as adding integrator and derivative gates.

2.4 Conclusion

In this Chapter, we have focused on the NNBC design problem for two-legged

robot motion control. We utilized LSTM neurons at the recurrent layer and lin-

ear feedforward neurons at the regression layer in the proposed neural controller

architecture. We proposed different neural controller structures which generate

either joint torques or limb angles to achieve stable walking. These neural con-

trollers were trained with varying options of training. Then, their stable walking

performances were evaluated and compared in a simulation environment.

As the main contribution of this work, we proposed NNBCs with an LSTM

recurrent layer instead of classical fully feedforward NNBCs for biped robot loco-

motion control. We demonstrated that they might achieve stable walking control

in various walking environments. Note that biped robots have hybrid dynamics,

and as a result, they exhibit different behavior during flight and stance phases for

each leg. Since LSTM networks have certain memory, we expect that they might

be able to track these changes, and this property may contribute to increasing

the stable walking performance. Secondly, proposed hybrid neural controllers

were utilized in the feedback loop and feedforward paths to support this idea.

In this way, their robot dynamic change tracking ability of the recurrent layer in

the NNBC was analyzed depending on controller placement. Thirdly, the per-

formances of proposed controllers were validated in the simulation environment

to show the robustness of the proposed structures under varying ground rough-

ness conditions, robot weight changes, and joint torque limitations for position

and torque control scenarios. Throughout these simulations, we showed that the

proposed NNBCs perform better than CPG and PID type controller alternatives

in the legged locomotion control problem. Fourthly, we benefit from well-known
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stability analysis methods COG, ZMP, and limit cycle analysis to understand

the behavioral characteristic of proposed NNBCs as much as the robot model

allows. As a final contribution, the generalization abilities of proposed NNBCs

were demonstrated, and training properties that may affect generalization perfor-

mance were investigated with walking simulations. As a result, L2 regularization

was the most critical factor in the training of networks to reach higher walking

success. Mini-batch sizes were determined as less effective but an important fac-

tor in generalization. Depending on the control scenario, the contribution of L2

regularization showed diversity. In the replacement of the PID controller with

a NNBC, L2 regularization affected the performance of the controller negatively

as compared to other trained neural controllers. To sum up, proposed NNBCs

performed better for a wide range of ramp angles, walking speeds, rough ter-

rain environments, robot weight changes, and joint torque limitations than their

counterparts in terms of simulation results.

Finally, the propriety of data set generation, over-fitting issues, and limitations

of the LSTM neuron model are discussed in detail. Then, possible improvements

are proposed related to the neuron model and training options. The use of the

LSTM recurrent layer allows the neural controller detect phase changes between

stance and flight without explicitly giving foot contact information to the NN.

Also, the stable walking conditions are widened by the generalization ability of

RNNs. Thus, the advantages of RNN usage in controlling the hybrid dynamical

systems are exemplified by a biped robot platform walking control problem.
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Chapter 3

Identification of Legged

Locomotion with Neural

Networks

This chapter focuses on the neural network design problem for system identifica-

tion of a two-legged robot in various terrain conditions. We benefit from neural

networks consisting of different types of recurrent and feedforward layers to yield

this. In detail, we search for efficient neural network architectures in the sense

of parameter number with respect to identification estimation error. To this

end, supervised training and testing data sets are generated using biped model

presented in Subsection 2.1.1 and central pattern generator Subsection 2.1.2 in

a similar way presented in Subsection 2.2.1. Furthermore, neural networks are

trained under parallel and series-parallel system identification models, and then

their estimation performances are compared with each other at the end of this

chapter.
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3.1 Problem Definition

Legged robot models include nonlinear dynamics due to the nature of the ac-

tuation method. Moreover, legged robots also show hybrid dynamical behavior

depending on the flight and contact phases of the legs. In other words, the dy-

namics of the robot model exhibits difference depending on the occurrence of

foot contact besides the nonlinear components. Hence, the nature of legged lo-

comotion makes the system identification problems even more difficult for legged

robotic systems.

Neuron models, which are building blocks of neural networks, have nonlinear-

ities in the neuron activation functions. From this perspective, neural networks

have similarities to nonlinear dynamic systems. For this reason, nonlinearities

in neuron activation functions may promise advantages in identifying system dy-

namics of nonlinear systems, see [59,60,88,89].

To this end, feedforward neural networks are employed in various types of sys-

tem identification schemes depending on the complexity of the identified model,

see [59,88]. Different from feedforward counterparts, recurrent neuron models can

store information by either the memory unit inside the neuron model or mutual

connection with other recurrent neurons in the same layer through consecutive

time steps. This characteristic promises further advantages in identifying hybrid

dynamical systems compared to feedforward networks.

Since both hybrid dynamical structure and nonlinear dynamics in the legged

robot model make it challenging to apply control and perform system identifica-

tion, recurrent neural networks also have significant potential in the biped robot

model identification. As expected, we show that the recurrent neural layer has

advantages over feedforward layer utilization in system identification of legged

locomotion [60]. Because as is reported in the NNBC studies in Chapter 2, the

LSTM layer is capable of tracking phase changes of hybrid dynamics of the biped

robot platform thanks to the internal structure of the LSTM neuron model. Since

recurrent neural networks have memory, we expect that they might be able to
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track these changes, and this property may contribute to increasing the system

identification performance.

With this motivation, this section searches for advantageous neural network ar-

chitectures, neuron models, and regularization techniques in system identification

of the biped robot model presented in Subsection 2.1.1.

3.2 Methodology

In this section, we explain two different system identification models utilized to

identify the dynamics of bipedal locomotion. Later on, supervised training and

testing data sets are generated for each identification model using this robot

model. Then, NNs architectures that will be evaluated are illustrated, and after

that, these NNs are trained to produce desired output data for the input data

in the training set. Lastly, the most successful NN architectures in each iden-

tification model are found for the biped robot locomotion system identification

problem.

3.2.1 System Identification Models

In this study, parallel and series-parallel models, which are defined in the following

subsections in detail, are employed to perform system identification using neural

networks. These two models differ by the series connection taken out from the

plant and given to the neural network. This functional connection may increase

the performance of the series-parallel model and prevent divergence of neural

network predictions compared to the parallel model in time.

In both models, the prediction error is defined by the difference between out-

puts of identified plant and identification neural network by using a suitable

metric such as the mean squared error (MSE) definition. Then, the neural net-

work is trained to minimize this error metric. Hence, it is aimed that the neural
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network presents the input and output relation of the plant.

3.2.1.1 Parallel System Identification Model

Parallel system identification model utilized in this study is demonstrated in Fig-

ure 3.1. Upper branch includes biped robot model and CPG defined in Subsec-

tions 2.1.1, 2.1.2, respectively. Basically robot model is driven by CPG depending

on excitation level input u[t] and ramp angle φ[t] of terrain. In this scheme, yyy[t+1]

denotes extended robot state vector which is combination of robot states xxx[t+ 1]

and derivatives of robot states ẋ̇ẋx[t+ 1] for the ease of explanation.
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Controller Biped Robot Model

System 

Identification 

Neural Network

𝒆[𝒕 + 𝟏]

𝑻𝒓[𝒕]

z-1
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Input: 𝒖[𝒕]

Ramp Angle 

Input: 𝝓[𝒕]

Robot States:

𝒚 𝒕 + 𝟏 =
𝒙[𝒕 + 𝟏]

�̇�[𝒕 + 𝟏]

Estimates of Robot 

States:

.𝒚 𝒕 + 𝟏 =
.𝒙[𝒕 + 𝟏]

/̇𝒙[𝒕 + 𝟏]

Figure 3.1: Parallel system identification model

Throughout the walk, ramp angle φ[t] and robot model joint torques TrTrTr[t] are

given to the system identification neural network (SINN) as inputs, and then

succeeding extended robot states yyy[t+ 1] are estimated by SINN. After that, the

difference between succeeding extended robot states yyy[t + 1] and the output of

the SINN ŷ̂ŷy[t+ 1] is denoted as the estimation error eee[t+ 1].

After obtaining the estimation error eee[t+1], mean squared errorEjEjEj is calculated
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for the jth walking pattern as shown in (3.1) to be used in (2.11):

EEEj =
N−1∑
t=1

(yyy[t+ 1]− ŷ̂ŷy[t+ 1])2

N − 1
=

N−1∑
t=1

(eee[t+ 1])2

N − 1
(3.1)

Later on, SINN weights are updated with respect to calculated error gradient

as thoroughly explained in Subsection 2.1.3. Thus, it is aimed to minimize the

estimation error given by (3.1) throughout the training procedure.

3.2.1.2 Series-Parallel System Identification Model

Series-parallel system identification model utilized in this study is demonstrated

in Figure 3.2. Basically, the series-parallel model differs from the parallel

model with a series connection that conveys delayed extended robot state vector

ydelayedydelayedydelayed[t+ 1,DDD] for previous time steps to the SINN.
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Robot States:

𝒚 𝒕 + 𝟏 =
𝒙[𝒕 + 𝟏]

�̇�[𝒕 + 𝟏]

Estimates of Robot 
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0𝒚 𝒕 + 𝟏 =
0𝒙[𝒕 + 𝟏]

1̇𝒙[𝒕 + 𝟏]

Figure 3.2: Series-parallel system identification model

The delayed extended robot state vector ydelayedydelayedydelayed[t + 1,DDD] for previous time

78



steps is defined as:

ydelayedydelayedydelayed[t+ 1,DDD] =


yyy[t+ 1−DDD[1]]

yyy[t+ 1−DDD[2]]

...

yyy[t+ 1−DDD[M ]]

 , DDD = [1, 2, ...,M ], (3.2)

where input delay vector DDD, which is the length of M , includes monotonically

increasing indexes to be used to get state variables of previous time steps.

Thus, SINN takes extended robot states for previous time steps so that diver-

gence of predictions from actual robot model states is partially prevented with

this connection through time. In addition to this, ramp angle φ[t] and robot

model joint torques TrTrTr[t] are also given to the SINN as other inputs, and then

succeeding extended robot states yyy[t + 1] are estimated by SINN. Later on, the

estimation error is calculated depending on the maximum number of previous

time steps as follows:

EEEj =
N−1∑

t=D[M ]

(yyy[t+ 1]− ŷ̂ŷy[t+ 1])2

N −D[M ]
=

N−1∑
t=D[M ]

(eee[t+ 1])2

N −D[M ]
(3.3)

3.2.2 Data Set Preparation

Similar to Subsection 2.2.1, the CPG controls the locomotion of a two-legged

robot model with reported parameters at [30] for different speed excitation levels

and ramp angles. Thus, the walking data set is produced, and then it is divided

into the training and testing sets. In this study, speed excitation levels and ramp

angles are selected as constants during walking simulations. After that, CPG-

driven locomotion patterns are classified as either successful or unsuccessful gait

patterns as explained in Subsection 2.2.1.

In detail, 40 uniformly distributed speed excitation values in the range of [3

10] and 39 uniformly distributed ramp angles in the range of [-9 9] degrees are

selected to form the data set. The CPG controller drives the biped robot model

for 1560 combinations of these ramp angles and speed excitation levels. As a
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result, 393 of these combinations, which corresponds to 25.19% of them as shown

in Figure 3.3, are determined as stable walking patterns according to successful

locomotion criteria in the Subsection 2.2.1.
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Figure 3.3: Distribution of successful and unsuccessful walking patterns with
respect to speed excitation level and ramp angle value

To speed up the training of the neural networks, which are described in the

Subsection 3.2.3, data set inputs and outputs are passed through decimation

operation, which is a signal processing technique for decreasing sample points in

sequences without causing aliasing distortion. Inputs and outputs of the CPG-

driven biped robot model simulated at a rate of 10 KHz for 10 seconds long are

filtered with an equiripple low pass filter with a 100 Hz passband cutoff frequency.

Then, a downsampling operation at 100 to 1 is applied to filtered data. Thus, the

decimation operation is completed without losing important information. After
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that, these locomotion data are re-scaled to fit the [-1/3 1/3] range to facilitate

the training process and use different neuron activation functions. Thus, robot

model input and output data, which are re-scaled and re-sampled at 100 Hz, are

produced to generate various supervised learning data sets. After that, successful

walking patterns are divided into two to constitute the training set from 320

patterns and the testing set from 73 patterns with the motivation of preventing

the over-fitting problem, as shown in Figure 3.4.
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Figure 3.4: Distribution of successful walking patterns to the training and testing
sets

Within the scope of this work, the performance of NNs is assessed in two

system identification models as explained in Subsection 3.2.1. In summary, one

of these models is the series-parallel system identification model. In this model,

the system identification neural network takes the ramp angle of the ground, joint

torques, state variables, and derivatives of state variables of the biped robot model

as input. Then, the capability of the neural network to estimate the subsequent
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time step state variables and their derivatives is measured by comparing them

with the actual values of the biped robot model. The other model is the parallel

system identification model that differs from the previous one by not providing the

state variables and derivatives of the bipedal robot model as input to the system

identification neural network. In this model, estimation errors are inevitably

accumulated through time, so the output of the parallel model may deviate from

the biped robot model easier than in the series-parallel model. In this context,

two different input-output data sets have been produced from the re-scaled and

re-sampled locomotion data sets, as detailed in the previous subsections.

3.2.2.1 Parallel Model Data Sets

In the parallel model, NNs are assigned to estimate next time step state variables

and their derivatives of the biped robot model for number of N − 1 time steps

according to ramp angle and joint torques inputs as listed in detail below:

• 28 Output data sequence [Dimensions: 28x(N-1)]

– 14 States: xi[n+ 1] where i = 1, ..., 14, n = 1, ..., N − 1

– 14 Velocity states: ẋi[n+ 1] where i = 1, ..., 14, n = 1, ..., N − 1

• 7 Input data sequence [Dimensions: 7x(N-1)]

– 6 Joint torques: Tri[n] where i = 1, ..., 6, n = 1, ..., N − 1

– 1 Ramp angle in degree

3.2.2.2 Series-Parallel Model Data Sets

In the series-parallel model, NNs are assigned to estimate next time step state

variables and their derivatives of the biped robot model according to ramp angle,

joint torques, state variables, and derivatives of state variables. If the selected

time delay step indexes are denoted in the array DDD, which is at the length of M ,
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state variables and their derivatives of previous time steps will be given to the

neural network as listed below. Here, DDD[M ] denotes the maximum number of

time delays, and N −DDD[M ] shows the number of time steps.

• 28 Output data sequence [Dimensions: 28x(N-D[M])]

– 14 States: xi[n+ 1] where i = 1, ..., 14, n = DDD[M ], ..., N − 1

– 14 Velocity states: ẋi[n+ 1] where i = 1, ..., 14, n = DDD[M ], ..., N − 1

• (7+28*M) Input data sequence [Dimensions: (7+28*M)x(N-DDD[M])]

– 14*M States: xi[n + 1 − D[j]] where i = 1, ..., 14, n = DDD[M ], ..., N −
1, j = 1, ...,M

– 14*M State derivatives: ẋi[n + 1 − D[j]] where i = 1, ..., 14, n =

DDD[M ], ..., N − 1, j = 1, ...,M

– 6 Joint torques: Tri[n+1−D[1]] where i = 1, ..., 6, n = DDD[M ], ..., N−1

– 1 Ramp angle in degree

3.2.3 System Identification Neural Network Architecture

The system identification neural network block, which exists in both parallel and

series-parallel model diagrams, is aimed to imitate the input-output relations of

the biped robot model in a way described in Figures 3.1 and 3.2.

The biped robot model is modeled with seven inputs which are six joint torques

and one ramp angle, and 28 outputs which are 14 state variables and 14 deriva-

tives of these state variables in this study. Due to the multi-input multi-output

(MIMO) model of the biped robot, the SINN block should also have a capable

neural network architecture to perform MIMO system identification. For this

reason, we decided to use multi-layered neural network architectures with up to 5

hidden layers, as shown in Figure 3.5. Different feedforward and recurrent layer

types are utilized in these hidden layers in the scope of this study.
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Furthermore, due to the dynamics of the biped robot, states are continuous

variables, so the neural network needs a regression layer at the output of the neural

network to minimize estimation errors. For this reason, all candidate neural

network architectures in Figure 3.5 are ended with a regression layer including

28 neurons with linear activation functions to represent state variables and their

first derivatives.

Let N denote the number of time steps of the generated walking pattern. DDD

is the input delay vector, M is the length of the input delay vector (DDD). DDD[M ]

is the maximum number of time delays for the series-parallel model and equals

to one for the parallel model. Accordingly, N − DDD[M ] successive estimations

should be performed in parallel and series-parallel models. From this perspective,

the identification problem can be considered as a MIMO time series prediction

problem for input and output series are defined in Figure 3.5. Basically, the

input vector at the length of (7 + 28 ∗M) is given to NN as input, then forward

propagation is applied, and 28 output is calculated at the output layer of NN for

each time step. This procedure is repeated for each of the (N−DDD[M ]) time steps.

Then, identification errors are found by comparing outputs of NN with desired

output series for the training set patterns. After that, the error gradient with

respect to network weights is calculated, and it is propagated from the output

layer to the previous layers of the NN. Finally, NN weights are updated with

optimizers such as Adam and AdamW in a similar way to Subsection 2.1.3.

One of the most significant drawbacks of neural networks is the possibility

of trapping into local minimums. That is why it is recommended to repeat the

training procedure with different weight initializations. In addition to this, when

the limited number of the training patterns is considered, we decided to use 5-fold

cross-validation in the training and testing of proposed SINNs. For this purpose,

we divide 320 training set patterns into five batches randomly. One of these five

batches is chosen as the validation set, and the remaining four of them consist

training set. With this training, validation, testing set separation, and random

weight initialization, SINN is trained five times by changing the validation set

at each fold. After that, the average of the system identification error is found

for the proposed SINN architecture by averaging the results of each fold for each
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data set. In this chapter, all reported error rates in the tables are the result of

the 5-fold cross-validation process. In addition, mini-batch size is chosen as 64 in

training, and patterns in the mini-batches are shuffled at the end of each epoch

throughout training.
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Input Series:
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Figure 3.5: Neural network architectures employed in the “System Identification Neural Network” block in the system
identification models
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3.3 Results and Discussion

This section assesses the system identification capacity of different types of neuron

models and network architectures under varying ground conditions and the mean

squared error metric. To this end, NNs are trained under series-parallel and

parallel models, and then their identification performances are compared with

each other. Finally, the obtained results are discussed in detail.

3.3.1 Series-Parallel System Identification Simulations

At first, the series-parallel system identification model is studied, because of the

series connection in the model which makes it possible to employ the fully feed-

forward neural network in the biped robot model system identification problem.

We start by investigating the suitability of different neural network layer types,

in other words, neuron models, to the system identification problem. To do

this, we start with a neural network with one hidden layer, as shown in Col-

umn (a) in Figure 3.5. In the scope of this initial study, 21 feedforward and 4

recurrent neuron models are utilized in this hidden layer as shown in the first

column of Table 3.1. In detail, LSTM [36], GRU [90], RNN [91] with Tanh

activation function, and RNN [91] with ReLU activation function are used as

the recurrent neuron models in Table 3.1. In addition to these, ReLU [92],

Tanh, ELU [93], Sigmoid, Hardshrink [94], Hardsigmoid [95], Hardtanh [96],

Hardswish [97], LeakyReLU [98], LogSigmoid [99], SELU [100], PReLU [101],

ReLU6 [102], RReLU [103], CELU [104], GELU [105], SiLU [106], Mish [107],

Softplus [108], SoftShrink [109] and Softsign [110] feedforward neuron models are

employed in the hidden layers in Table 3.1. Regardless of the type of neural

model used in the hidden layer, the hidden layer is followed by a regression layer

with linear activation functions.

In these neural networks, the hidden layer neuron number is determined in a

way that the neural network has an equal or higher number of parameters than

the parameter number of a neural network with 50 LSTM neurons employed in
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its hidden layer. It means that compared neural networks have at least 18828

learnable parameters. In this context, types and numbers of hidden layer neurons

are given in the first column of Table 3.1. Under these conditions, 25 different NNs

are trained using the Adam optimizer with a learning constant of 0.01 throughout

30000 epochs. Network weights are stored at every 100 epochs, and then they

are used to evaluate the training, validation, and testing set MSE rates of the

trained neural networks. After that, training and testing set error rates which are

computed with neural network weights at the learning step that gives the lowest

validation set are noted. This whole process is repeated five times to apply 5-fold

cross-validation. Finally, average of each data set error rate is reported in Table

3.1.

Table 3.1 shows that LSTM recurrent layer with 50 neurons reaches the lowest

MSE error rates in all data sets among tested hidden layer types. After LSTM,

LeakyReLU feedforward layer with 294 neurons obtains the second-lowest MSE

error rates in all data sets. Thirdly, Hardsigmoid feedforward layer with 294

neurons achieves the third-lowest MSE error rates at each data set. Even though

single hidden layer utilization is not enough to conclude, these results are enough

to expect that LSTM and LeakyReLU have the most promising performances in

the recurrent and feedforward layers, respectively. For this reason, we employ

LSTM and LeakyReLU neuron models in the hidden layers in the rest of the

chapter.

For the sake of completeness, we express the definition of the LeakyReLU

neuron model employed in this study as follows:

ooo =

WWWxxx, if WWWxxx ≥ 0

0.01 ∗WWWxxx, otherwise
(3.4)

where xxx, WWW , and ooo represent the input vector, neuron model weights, and output

of the neuron model, respectively.

Using the results from Table 3.1, we extend our research to find optimum neural

network architectures by using feedforward and recurrent layers under the series-

parallel model. To do that, the listed SINNs in Table 3.2, which are designed
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Table 3.1: System identification performance comparisons of neural networks
with one hidden layer for the series-parallel model

Hidden Layer Input Parameter Data Set

Architecture Delay Number Training Validation Testing

50 LSTM D=[1] 18828 2.23 · 10−6 2.62 · 10−6 2.90 · 10−6

60 GRU D=[1] 19168 5.23 · 10−6 5.44 · 10−6 5.41 · 10−6

109 RNN (Tanh) D=[1] 18994 5.38 · 10−5 5.21 · 10−5 5.48 · 10−5

109 RNN (ReLU) D=[1] 18994 6.81 · 10−6 7.18 · 10−6 7.02 · 10−6

294 ReLU D=[1] 18844 4.81 · 10−6 5.58 · 10−6 5.13 · 10−6

294 Tanh D=[1] 18844 2.42 · 10−5 2.47 · 10−5 2.47 · 10−5

294 ELU D=[1] 18844 2.18 · 10−5 2.22 · 10−5 2.23 · 10−5

294 Sigmoid D=[1] 18844 8.77 · 10−6 1.01 · 10−5 9.53 · 10−6

294 Hardshrink D=[1] 18844 3.22 · 10−3 3.21 · 10−3 3.31 · 10−3

294 Hardsigmoid D=[1] 18844 4.13 · 10−6 5.18 · 10−6 4.73 · 10−6

294 Hardtanh D=[1] 18844 5.78 · 10−5 5.82 · 10−5 5.98 · 10−5

294 Hardswish D=[1] 18844 2.72 · 10−5 2.76 · 10−5 2.79 · 10−5

294 LeakyReLU D=[1] 18844 3.88 · 10−6 5.02 · 10−6 4.49 · 10−6

294 LogSigmoid D=[1] 18844 9.39 · 10−6 1.08 · 10−5 1.03 · 10−5

294 SELU D=[1] 18844 1.89 · 10−5 1.93 · 10−5 1.94 · 10−5

294 PReLU D=[1] 18845 6.3 · 10−6 7.53 · 10−6 6.86 · 10−6

294 ReLU6 D=[1] 18844 4.81 · 10−6 5.58 · 10−6 5.13 · 10−6

294 RReLU D=[1] 18844 5.11 · 10−5 5.13 · 10−5 5.28 · 10−5

294 CELU D=[1] 18844 2.18 · 10−5 2.22 · 10−5 2.23 · 10−5

294 GELU D=[1] 18844 1.31 · 10−5 1.38 · 10−5 1.34 · 10−5

294 SiLU D=[1] 18844 2.17 · 10−5 2.23 · 10−5 2.2 · 10−5

294 Mish D=[1] 18844 2.18 · 10−5 2.22 · 10−5 2.21 · 10−5

294 Softplus D=[1] 18844 9.28 · 10−6 1.08 · 10−5 1.0 · 10−5

294 SoftShrink D=[1] 18844 2.75 · 10−3 2.74 · 10−3 2.83 · 10−3

294 Softsign D=[1] 18844 1.65 · 10−5 1.69 · 10−5 1.69 · 10−5
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to have up to at most 710428 learnable parameters, are trained and tested to

evaluate the identification capability of deep neural networks (DNNs). The first

column lists the hidden layer architecture from the input to the last layer before

the regression layer. The second column demonstrates the input delay vector,

which determines the number of previous time step biped robot model state

information. The third column shows the learnable parameter number inside the

NN. Finally, the last three columns show the MSE error rates obtained using

network weights that give the least MSE rate over the validation set at all data

sets. Table 3.2 compares the results of utilization of fully feedforward layers,

fully recurrent layers, and combinations of feedforward and recurrent layers as

the hidden layers in the system identification of the biped robot model.

Fully feedforward layer utilization is tested starting from one layer up to four-

layer with an increasing number of the previous time step robot state information.

First, we use one LeakyReLU layer with one previous time step state information

and obtained lower MSE rates than in Table 3.1 thanks to increasing hidden

layer neuron number. Then, we increase the previous time step number to two

to analyze the effect of the number of previous time step state information. We

see that the total number of neurons in the hidden layer decreases due to the

learnable parameter number limitation, and SINN is accomplished to reach much

lower error rates. After that, three previous time step numbers are tested, but

a much-limited error rate decrease is acquired in the testing set by adding one

more time step state information than the previous increment. For this reason, we

limit the previous time step number to three and start to increase the number of

hidden layers. While doing that, we design to have the same number of neurons

at each hidden layer to comply with the upper parameter limit. Two hidden

layer utilization decreases error rates, but three and four hidden layers cause

increases in testing data set. At the end of the conducted experiments with fully

feedforward hidden layers, it is concluded that the robot model state information

for three previous time steps and two hidden layers with 784 LeakyReLU neurons

at each reached the lowest error rate in the testing set.

Fully recurrent layer utilization is tested starting from one layer up to three-

layer with one previous time step robot state information. First, we use one
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LSTM layer with one previous time step state information and obtain lower MSE

rates than in Table 3.1 thanks to increasing hidden layer neuron number, again.

Then, we increase the number of hidden layers to two by using the same number

of LSTM neurons at each layer. With this NN architecture, SINN is succeeded

in reaching much lower error rates than the one LSTM layer. Thus, it acquires

a lower testing set MSE rate than all tested fully feedforward hidden layer archi-

tectures. After that, three LSTM layer utilization is tested, but a much-limited

error rate decrease is acquired in the testing set by adding this layer, and MSE on

the validation set increases. These results conclude that utilization of two LSTM

layers obtains a critical amount of error decrease, and third layer utilization is

also helpful, but gain is marginal.

Later on, we search for system identification performance of various combina-

tions of feedforward and recurrent layers as the hidden layers. For this purpose,

the performances of NNs with up to five hidden layers are evaluated. In this

study, feedforward layer neuron number is limited to 70, and neuron numbers of

LSTM layers are selected as equal and not exceeding the number of learnable

parameters limitation. As a result of the comparisons between many neural net-

work architectures in Table 3.2, the hidden layer architecture in the shape of 233

LSTM, 233 LSTM, and 70 LeakyReLU acquires the lowest amount of MSE in

validation and testing data sets. For this reason, the neural network with this

hidden layer architecture is named as selected system identification neural net-

work (SSINN) in the rest of this subsection. SSINN consists of two LSTM layers

and two feedforward layers, including the regression layer at the end of the net-

work. This shows the potential of NNs which includes combinations of recurrent

and feedforward layers for system identification problems.
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Table 3.2: System identification performance comparisons of neural networks with various numbers of hidden layers for the
series-parallel model

Hidden Layer Input Parameter Data Set

Architecture Delay Number Training Validation Testing

400 LSTM D=[1] 710428 1.02 · 10−6 2.29 · 10−6 2.21 · 10−6

235 LSTM, 235 LSTM D=[1] 705968 5.22 · 10−7 1.51 · 10−6 1.39 · 10−6

183 LSTM, 183 LSTM, 183 LSTM D=[1] 704944 2.44 · 10−7 1.54 · 10−6 1.39 · 10−6

70 LeakyReLU, 383 LSTM D=[1] 710332 7.64 · 10−7 1.9 · 10−6 1.75 · 10−6

70 LeakyReLU, 70 LeakyReLU, 381 LSTM D=[1] 708558 6.57 · 10−7 1.7 · 10−6 1.56 · 10−6

70 LeakyReLU, 229 LSTM, 229 LSTM D=[1] 706036 4.68 · 10−7 1.57 · 10−6 1.45 · 10−6

70 LeakyReLU, 70 LeakyReLU, 228 LSTM, 228 LSTM D=[1] 705198 4.39 · 10−7 1.94 · 10−6 1.78 · 10−6

70 LeakyReLU 180 LSTM, 180 LSTM, 180 LSTM D=[1] 710308 2.21 · 10−7 1.76 · 10−6 1.61 · 10−6

70 LeakyReLU, 70 LeakyReLU, 179 LSTM, 179 LSTM, 179 LSTM D=[1] 707766 2.87 · 10−7 2.29. · 10−6 2.1 · 10−6

394 LSTM, 70 LeakyReLU D=[1] 708894 6.87 · 10−7 1.65 · 10−6 1.49 · 10−6

392 LSTM, 70 LeakyReLU, 70 LeakyReLU D=[1] 707140 4.53 · 10−7 1.53 · 10−6 1.42 · 10−6

233 LSTM, 233 LSTM, 70 LeakyReLU D=[1] 706184 4.32 · 10−7 1.39 · 10−6 1.27 · 10−6

232 LSTM, 232 LSTM, 70 LeakyReLU, 70 LeakyReLU D=[1] 705348 3.84 · 10−7 1.54 · 10−6 1.44 · 10−6

182 LSTM, 182 LSTM, 182 LSTM, 70 LeakyReLU D=[1] 707126 3.73 · 10−7 1.49 · 10−6 1.34 · 10−6

181 LSTM, 181 LSTM, 181 LSTM, 70 LeakyReLU, 70 LeakyReLU D=[1] 704602 3.15 · 10−7 1.8 · 10−6 1.62 · 10−6

70 LeakyReLU, 377 LSTM, 70 LeakyReLU D=[1] 708060 6.88 · 10−7 1.62 · 10−6 1.55 · 10−6

70 LeakyReLU, 227 LSTM, 227 LSTM, 70 LeakyReLU D=[1] 706008 5.09 · 10−7 1.73 · 10−6 1.53 · 10−6

70 LeakyReLU, 178 LSTM, 178 LSTM, 178 LSTM, 70 LeakyReLU D=[1] 704830 3.05 · 10−7 1.96 · 10−6 1.73 · 10−6

266 LSTM, 70 LeakyReLU, 266 LSTM D=[1] 708190 6.8 · 10−7 2.1 · 10−6 2.14 · 10−6

70 LeakyReLU, 258 LSTM, 70 LeakyReLU, 258 LSTM D=[1] 709022 4.89 · 10−7 2.39 · 10−6 2.34 · 10−6

263 LSTM, 70 LeakyReLU, 263 LSTM, 70 LeakyReLU D=[1] 706968 3.73 · 10−7 1.57 · 10−6 1.61 · 10−6

70 LeakyReLU, 255 LSTM, 70 LeakyReLU, 255 LSTM, 70 LeakyReLU D=[1] 707428 5.77 · 10−7 2.36 · 10−6 2.2 · 10−6

11100 LeakyReLU D=[1] 710428 1.43 · 10−6 3.34 · 10−6 2.99 · 10−6

7722 LeakyReLU D=[1, 2] 710452 1.07 · 10−6 2.74 · 10−6 2.29 · 10−6

5920 LeakyReLU D=[1, 2, 3] 710428 1.03 · 10−6 2.6 · 10−6 2.28 · 10−6

784 LeakyReLU, 784 LeakyReLU D=[1, 2, 3] 709548 4.39 · 10−7 2.25 · 10−6 2.13 · 10−6

566 LeakyReLU, 566 LeakyReLU, 566 LeakyReLU D=[1, 2, 3] 709792 2.17 · 10−7 2.24 · 10−6 2.16 · 10−6

466 LeakyReLU, 466 LeakyReLU, 466 LeakyReLU, 466 LeakyReLU D=[1, 2, 3] 708814 1.71 · 10−7 2.33 · 10−6 2.2 · 10−6
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Various regularization techniques are proposed to increase the generalization

performance of neural networks in the literature. Table 3.3 presents the results of

the effects of L2 and dropout regularization techniques in the training of SSINN.

L2 regularization constant of 0.001 reduces the MSE rates in validation and test-

ing data sets. However, higher and lower regularization constants increase the

MSE rates. Moreover, the dropout technique is applied by adding a dropout

layer between LSTM and LeakyReLU layers. The dropout rate of 0.001 reached

the lowest error rate for validation and testing among all regularization trials in

Table 3.3. In addition to these, dropout and L2 regularizations are also applied

together to the SSINN training. Combinations of the dropout rates of 0.001 and

0.0001, and L2 constants 0.001 and 0.0001 decrease MSE rates in the testing set.

Nevertheless, the lowest validation and testing set MSE rates are obtained using

only dropout regularization.

3.3.2 Parallel System Identification Simulations

Second, the parallel system identification model is studied where LSTM and

LeakyReLU neuron types are utilized to measure the system identification per-

formance of various hidden layer architectures. Table 3.4 summarizes the per-

formance of usage of fully recurrent layers and combinations of feedforward and

recurrent layers as the hidden layers in the system identification of the biped robot

model. To do that, the listed SINNs in Table 3.4, which are designed to have up

to at least 712108 learnable parameters, are trained and tested to evaluate the

identification capability of deep neural networks (DNNs).

Different from series-parallel system identification simulations reported in Sub-

section 3.3.1, fully feedforward layers are not tested in this subsection due to the

inexistence of series connection in the parallel model because the identification

problem becomes even more difficult without this series connection. Only if a

high number of the previous time step state information is introduced to the

fully feedforward neural network, the hybrid dynamical model of the biped robot

system can be identified with reasonable error rates. Since the usage of a high
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Table 3.3: Results of dropout and L2 regularization implementation to the se-
lected system identification neural network for series-parallel model

L2 Dropout Data Set

Constant Rate Training Validation Testing

0 0 4.32 · 10−7 1.39 · 10−6 1.27 · 10−6

0.0001 0 4.81 · 10−7 1.4 · 10−6 1.34 · 10−6

0.0005 0 4.08 · 10−7 1.41 · 10−6 1.34 · 10−6

0.001 0 4.57 · 10−7 1.36 · 10−6 1.25 · 10−6

0.005 0 4.77 · 10−7 1.48 · 10−6 1.31 · 10−6

0.01 0 6.1 · 10−7 1.46 · 10−6 1.34 · 10−6

0.1 0 2.74 · 10−6 4.05 · 10−6 3.68 · 10−6

0 0.0001 4.11 · 10−7 1.39 · 10−6 1.27 · 10−6

0 0.001 4.44 · 10−7 1.33 · 10−6 1.21 · 10−6

0 0.002 5.5 · 10−7 1.37 · 10−6 1.27 · 10−6

0 0.01 8.03 · 10−7 1.61 · 10−6 1.53 · 10−6

0 0.1 9.63 · 10−6 9.86 · 10−6 9.9 · 10−6

0.001 0.001 5.09 · 10−7 1.45 · 10−6 1.25 · 10−6

0.001 0.0001 4.17 · 10−7 1.37 · 10−6 1.25 · 10−6

0.0001 0.001 5.35 · 10−7 1.44 · 10−6 1.25 · 10−6

0.0001 0.0001 3.88 · 10−7 1.38 · 10−6 1.26 · 10−6
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number of previous time steps requires the utilization of most of the network

parameters at the input layer, which will limit the performance of SINN, we do

not perform this in the scope of our study.

Fully recurrent layer utilization is tested starting from one layer up to three-

layer. At first, we use one LSTM layer and obtain reported MSE rates in Table

3.4. Due to the lack of series connection in the parallel model, MSE rates for

single LSTM hidden layer usage are much higher than in Table 3.2 and even

Table 3.1. Then, we increase the number of hidden layers to two by using the

same number of LSTM neurons at each layer. With this NN architecture, SINN

is succeeded in reaching a lower error rate than the one LSTM layer. After that,

three LSTM layer utilization is tested, but MSE rates on the validation and

testing sets increased instead of decreasing.

Later on, we search for system identification performance of various combina-

tions of feedforward and recurrent layers as the hidden layers. For this purpose,

the performances of NNs with up to five hidden layers are evaluated. In this

study, the feedforward layer neuron number is limited to 70, and neuron numbers

of LSTM layers are selected as equal so that the number of learnable parameters

does not fall below the limitation. As a result of the comparisons between many

neural network architectures in Table 3.2, the hidden layer architecture in the

shape of 70 LeakyReLU, 231 LSTM, and 231 LSTM acquires the lowest amount

of MSE in validation and testing data sets. For this reason, the neural network

with this hidden layer architecture is named selected system identification neural

network (SSINN) in the rest of this subsection. Thus, SSINN consists of one

feedforward input layer, two LSTM layers, and one regression layer at the end of

the network. This shows the potential of NNs, which includes combinations of

recurrent and feedforward layers for system identification problems again.
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Table 3.4: System identification performance comparisons of neural networks with various numbers of hidden layers for the
parallel model

Hidden Layer Parameter Data Set

Architecture Number Training Validation Testing

414 LSTM 712108 4.99 · 10−6 9.25 · 10−6 8.96 · 10−6

241 LSTM, 241 LSTM 714352 4.58 · 10−6 9.01 · 10−6 8.29 · 10−6

187 LSTM, 187 LSTM, 187 LSTM 714368 4.33 · 10−6 9.48 · 10−6 8.95 · 10−6

409 LSTM, 70 LeakyReLU 714536 4.39 · 10−6 9.91 · 10−6 9.03 · 10−6

239 LSTM, 239 LSTM, 70 LeakyReLU 714756 4.28 · 10−6 9.01 · 10−6 8.60 · 10−6

238 LSTM, 238 LSTM, 70 LeakyReLU, 70 LeakyReLU 713888 4.3 · 10−6 9.51 · 10−6 8.94 · 10−6

271 LSTM, 70 LeakyReLU, 271 LSTM, 70 LeakyReLU 715400 4.37 · 10−6 9.18 · 10−6 8.79 · 10−6

70 LeakyReLU, 385 LSTM 715148 4.45 · 10−6 8.6 · 10−6 8.3 · 10−6

70 LeakyReLU, 231 LSTM, 231 LSTM 715764 4.03 · 10−6 8.73 · 10−6 8.11 · 10−6

70 LeakyReLU, 70 LeakyReLU, 230 LSTM, 230 LSTM 714878 4.34 · 10−6 8.83 · 10−6 8.11 · 10−6

70 LeakyReLU, 260 LSTM, 70 LeakyReLU, 260 LSTM 716698 4.16 · 10−6 9.43 · 10−6 8.95 · 10−6

70 LeakyReLU, 229 LSTM, 229 LSTM, 70 LeakyReLU 715724 3.89 · 10−6 8.74 · 10−6 8.42 · 10−6

70 LeakyReLU, 257 LSTM, 70 LeakyReLU, 257 LSTM, 70 LeakyReLU 715092 4.26 · 10−6 9.63 · 10−6 8.67 · 10−6
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Table 3.5 presents the results of the effects of L2 regularization in the training of

SSINN. Different from the series-parallel model, L2 regularization cannot succeed

in reducing the MSE rate on any data set. This result may be related to the

properties of the parallel model that makes the problem harder.

Table 3.5: Results of L2 regularization implementation to the selected system
identification neural network for parallel model

L2 Data Set

Constant Training Validation Testing

0 4.03 · 10−6 8.73 · 10−6 8.11 · 10−6

0.00001 4.03 · 10−6 8.73 · 10−6 8.11 · 10−6

0.0001 4.34 · 10−6 8.75 · 10−6 8.13 · 10−6

0.001 4.53 · 10−6 8.82 · 10−6 8.3 · 10−6

0.01 4.7 · 10−6 8.9 · 10−6 8.45 · 10−6

3.3.3 Discussion

In this study, the walking data set was generated using the biped robot model

and central pattern generator. Then, the data set was divided into training

and testing data sets. This separation was performed to prevent the over-fitting

issue that degrades machine learning algorithms’ performance on unseen data. In

addition to these, we employed 5-fold cross-validation to minimize the possibility

of trapping to local minima. In detail, neural network weights were initialized

randomly, and training set patterns were divided into five, and one of them was

used as the validation set, and the remainings constitute the training set for each

fold. All reported results were obtained with neural network weights that gave

the lowest MSE rates on validation set patterns throughout the training process

in this chapter.

The utilization of one and two recurrent layers became helpful in reducing

MSE rates on all data sets and each system identification model. However, the
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contribution of a higher number of recurrent layers was either limited or nega-

tive. Furthermore, the addition of feedforward layers might help minimize error

rates. Still, their optimum positions in the neural network architectures showed

differences between parallel and series-parallel models in our studies. In addition,

fully feedforward neural networks cannot be employed in an end-to-end manner

in the parallel system identification model due to the lack of series connection

in the model. One solution way is to add a block with memory to the system

identification scheme, such as in parallel neural network Wiener or Hammerstein

models, see [59]. With similar motivation, we proposed utilizing recurrent layers

due to their memory property. Thus, their usage lets us use neural networks

end-to-end in the parallel model.

Data set generation is one of the crucial steps in training neural networks

because the generalization ability of neural networks mostly depends on the in-

clusivity of the data set due to the nature of the supervised learning algorithm

that we utilized in this study. For this reason, it is beneficial to collect more

movement data for the biped robot model, so the data set should be enlarged by

the addition of not only successful but also failing walking patterns. In addition

to this, we limited feedforward layer sizes to 70 to force this layer to extract fea-

tures in data with a similar motivation to the autoencoder usage. Moreover, we

had to determine a constant layer size to be comparable between different neu-

ral network architectures. For this reason, the use of combinations of recurrent

and feedforward layers requires further research using different feedforward layer

neuron sizes. Besides applied layer types in this study, there are different types

of layers, such as convolutional layers. Their performance should be evaluated

to find an optimum neural network-based system identification scheme for our

problem. Another critical topic is the effect of applied regularization techniques.

L2 and dropout regularization with small regularization constants reduced the er-

ror rate of the testing set in the series-parallel model. Unfortunately, we cannot

obtain any error rate decrease with L2 in the parallel model. This situation may

be related to the insufficient number of neural network parameters for increased

problem difficulty due to the inexistence of the series connection from the robot

model in the parallel model. Inevitably this topic requires further research, but
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we had to limit our analysis to a similar parameter number with series-parallel

model due to obtaining comparable results and our limited computation power

for training large neural networks.

To sum up, it is concluded that combinations of recurrent and feedforward

layers promise the potential for system identification of hybrid dynamical systems

in an end-to-end manner in terms of results obtained in this study.

3.4 Conclusion

In this Chapter, we proposed the use of neural networks for system identifica-

tion of the biped robot model by using parallel and series-parallel identification

schemes. We utilized feedforward and recurrent layers in the proposed neural net-

work architectures. The proposed system identification neural networks estimate

robot model state variables and derivatives of these state variables with respect

to inputs and previous time step state information of the robot model.

These neural networks were trained with varying training options. Later on,

we evaluated and compared their identification performance in the simulation

environment. As another contribution, the generalization abilities of proposed

SINN architectures were tested by investigating training properties that may

affect generalization performance. As a result, dropout regularization was the

most effective regularization technique in the training of networks to minimize

mean squared error rates on the testing data set.

Finally, data set generation, over-fitting issues, and differences in system iden-

tification models were discussed in detail. Later on, possible development ways

were proposed related to data set expansion, neural network architecture enlarge-

ments, and different neuron models. Apart from these, adding a recurrent layer

allowed the neural network to estimate the next time step of robot states with

lower error rates, and it made end-to-end neural network utilization in a parallel

identification scheme possible. Moreover, using combinations of feedforward and
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recurrent layers was exemplified in the system identification of hybrid dynamical

systems by a biped robot model.
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Chapter 4

Conclusion and Future Works

Legged locomotion is a popular area of research due to its agile mobility with

a wide range of motion achieved thanks to its structural similarity to its bio-

logical counterparts. To achieve the targeted performance, legged robots must

be controlled with well-designed locomotion controllers, and this requires a good

understanding of the characteristics of the robotic system. Unfortunately, legged

robotic systems contain nonlinear dynamics which vary depending on the foot’s

contact with the ground. For this reason, control and system identification of

them are complex research problems. This dissertation proposes the utilization

of recurrent neural networks to overcome the complexity of nonlinear dynamics

of the biped robot model in the control and system identification.

In the first part of this dissertation, we began by summarizing the literature on

the legged robotic systems, stability analysis methods for legged locomotion, clas-

sical controllers, reflex-based gait controllers inspired by nature, neural networks,

and system identification. While doing that, we criticized some of these studies

and suggested possible ways to improve. Later on, we presented the motivation

and contributions of this dissertation.

The second part presents our studies on the NNBC design problem for two-

legged robot motion control. To this end, we benefited from a biped robot
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model and CPG to produce walking data for the training and testing of pro-

posed NNBCs. In this study, we utilized the LSTM layer as a hidden layer and

feedforward regression layer in the proposed neural network architectures. The

proposed neural controllers were employed in the feedback and feedforward paths

to control bipedal locomotion so that they produced either joint torques or limb

angles to achieve stable walking. Moreover, we investigated the effects of varying

training options such as mini-batch sizes and regularization methods. Finally, the

stable walking generation capacity of proposed NNBCs is evaluated and compared

in the simulation environment for varying ground conditions and robot model dy-

namics. Our results showed that recurrent layer utilization allowed the tracking

of legged locomotion phase changes and increased the control robustness. Hence,

NNBCs showed more robust performance than CPG and PID type controllers

in the varying walking ground roughness conditions, robot weight changes, and

joint torque limitations. In addition, we analyzed the characteristics of NNBCs

with well-known stability analysis methods. Finally, the generation of the data

sets, the emergence of over-fitting issues, and the limitations of the LSTM neuron

model are discussed in detail.

In the third part, we focused on system identification of the biped robot model

using neural networks in an end-to-end manner. To this end, we utilized the same

biped robot model and CPG to form data sets that were employed in the train-

ing and testing of proposed neural network architectures. Throughout this study,

we benefited from parallel and series-parallel system identification models. First,

we searched for suitable neuron models and found that LSTM and LeakyReLU

performed the best among recurrent and feedforward neuron types, respectively.

Moreover, the addition of a recurrent layer was beneficial in reducing the iden-

tification error metric in parallel and series-parallel models. Furthermore, the

combination of two recurrent layers, one feedforward layer, and a regression layer

reached the lowest error rates among the proposed network architectures. Later

on, we determined that regularization techniques helped minimize error rates,

especially in the series-parallel model. Finally, we discussed the importance of

the representability of the robot model through the generated data set in the
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system identification, and we proposed data set enlargement methods. In addi-

tion, we suggested expanding evaluated neural network architectures with bigger

feedforward layers and different neuron models.

As a future work, proposed neural network-based control and system identifi-

cation techniques in this dissertation will be tested with a physical biped robot

platform in our laboratory. In the scope of 120E104 coded TÜBİTAK project, we

built a test platform that includes a biped robot with seven degrees of freedom.

In this way, we aim to validate proposed algorithms under real-world conditions

using this robot platform developed throughout the project.

In the near future, we will examine the generalization abilities of the proposed

controllers at varying ground stiffness in the simulation environment. Subse-

quently, we will explore possible gains by widening the proposed neural controller

with parallel neural layers, rather than serial flow as in this study. In addition to

these, we plan to modify the internal structure of the LSTM neuron model to be

more appropriate for the control tasks.

Another possible future research direction is to enhance the representativity of

the system identification neural network, by increasing the number and diversity

of robot motion patterns in the data set. To achieve this, we will use different

walking controllers in the short term and reinforcement learning to collect more

movement data from the biped robot model in the medium term.

As a continuation of these studies, we plan to include robot platform dynam-

ics in the neural network training process within the scope of 120E104 coded

TÜBİTAK project. To yield this, we will employ a model reference-based neu-

ral network adaptive control scheme via the addition of recurrent layers in both

system identification and controller blocks. Thus, we want to design adaptable

neural controllers which can adapt to the differences between the theoretical

robot model and the physical robot platform, resulting from aging, carrying a

load, and unmodeled dynamics of the robotic system. Finally, the performance

of the proposed model reference-based neural network adaptive control scheme
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will be investigated and evaluated using both the biped robot model in the sim-

ulation environment and the physical robot platform built in our laboratory as a

comparative study.
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[1] Ba. Çatalbaş and Ö. Morgül, “Two-legged robot motion control with recur-

rent neural networks,” Journal of Intelligent & Robotic Systems, vol. 104,

no. 4, pp. 1–30, 2022.

[2] S. Feng, X. Xinjilefu, C. G. Atkeson, and J. Kim, “Optimization based con-

troller design and implementation for the atlas robot in the darpa robotics

challenge finals,” in 2015 IEEE-RAS 15th International Conference on Hu-

manoid Robots (Humanoids), pp. 1028–1035, IEEE, 2015.

[3] E. Guizzo, “By leaps and bounds: An exclusive look at how boston dynam-

ics is redefining robot agility,” IEEE Spectrum, vol. 56, no. 12, pp. 34–39,

2019.

[4] P. Holmes, R. J. Full, D. Koditschek, and J. Guckenheimer, “The dynamics

of legged locomotion: Models, analyses, and challenges,” SIAM review,

vol. 48, no. 2, pp. 207–304, 2006.

[5] U. Saranlı, M. Buehler, and D. E. Koditschek, “Rhex: A simple and highly

mobile hexapod robot,” The International Journal of Robotics Research,

vol. 20, no. 7, pp. 616–631, 2001.

[6] İ. Uyanık, U. Saranlı, and Ö. Morgül, “Adaptive control of a spring-mass

hopper,” in 2011 IEEE International Conference on Robotics and Automa-

tion, pp. 2138–2143, IEEE, 2011.

[7] M. Chignoli, D. Kim, E. Stanger-Jones, and S. Kim, “The mit humanoid

robot: Design, motion planning, and control for acrobatic behaviors,” arXiv

preprint arXiv:2104.09025, 2021.

105



[8] W. J. Schwind, Spring loaded inverted pendulum running: A plant model.

PhD thesis, University of Michigan, USA, 1998.

[9] I. Uyanık, M. M. Ankaralı, N. J. Cowan, U. Saranlı, and Ö. Morgül, “Identi-
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Appendix A

Equations of Biped Robot Model

Following equations are taken from Taga et al. [30] and they are added to appendix

for the sake of completeness. They are employed to generate data sets and test the

locomotion control ability of trained neural networks in the paper. In addition to

these, x5, x8, x11 and x14 are referred as θ1, θ2, θ3 and θ4 for the sake of simplicity

throughout the paper, respectively. For further details see [30].

System Parameters:

M = 48, m1 = 7, m2 = 4, l1 = 0.5, l2 = 0.6

I1 =
m1l

2
1

12
, I2 =

m2l
2
2

12
, b1 = 10, b2 = 10, g = 9.8,

bk = 1000, kk = 10000, kg = 10000, bg = 1000,
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Initial Conditions:

x1 = 0.0, x2 = 1.09, x5 = 0.45π, x8 = 0.57π,

x3 = x1 +
l1
2

cosx5, x4 = x2 −
l1
2

sinx5, x11 = 0.45π,

x6 = x1 +
l1
2

cosx8, x7 = x2 −
l1
2

sinx8, x14 = 0.57π,

x9 = l1 cosx5 +
l2
2

cosx11, x12 = l1 cosx8 +
l2
2

cosx14,

x10 = x2 − l1 sinx5− l2
2

sinx11,

x13 = x2 − l1 sinx8− l2
2

sinx14,

ẋi = 0, (i = 1, 2, .., 14), u̇i, v̇i = 0, (i = 1, 2, .., 12)

Equations of Kinematic Constraints:

x1 = x3 −
l1
2

cosx5 = x6 −
l1
2

cosx8

x2 = x4 −
l1
2

sinx5 = x7 −
l1
2

sinx8

x3 +
l1
2

cosx5 = x9 −
l2
2

cosx11

x4 −
l1
2

sinx5 = x10 +
l2
2

sinx11

x6 +
l1
2

cosx8 = x12 −
l2
2

cosx14

x7 +
l1
2

sinx8 = x13 +
l2
2

sinx14

(xr, yr) = (x9 +
l2
2

cosx11, x10 −
l2
2

sinx11)

(xl, yl) = (x12 +
l2
2

cosx14, x13 −
l2
2

sinx14)
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Feedback pathway:

a1 = a3 = a4 = a6 =a8 = 1.5, a2 = 1.0, a5 = a7 = 3.0

Feed1 = −Feed2 =a3(x11 − π/2)h(Fg2) + a4h(Fg4)

+ a1(x5 − π/2)− a2(x8 − π/2)

Feed3 = −Feed4 =a3(x14 − π/2)h(Fg4) + a4h(Fg2)

+ a1(x8 − π/2)− a2(x5 − π/2)

Feed5 = −Feed6 =a5(π/2− x14)h(Fg4)

Feed7 = −Feed8 =a5(π/2− x11)h(Fg2)

Feed9 = −Feed10 =(a6(π/2− x11)− a8ẋ11)h(Fg2)

+ a7(π/2− x14)h(Fg4)

Feed11 = −Feed12 =(a6(π/2− x14)− a8ẋ14)h(Fg4)

+ a7(π/2− x11)h(Fg2)−
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Equations of Motion:

Mẍ1 =F1 + F3, Mẍ2 = F2 + F4 −Mg

m1ẍ3 =− F1 + F5, m1ẍ4 = −F2 + F6 −m1g

I1ẍ5 =− F1
l1
2

sinx5 − F2
l1
2

cosx5 − F5
l1
2

sinx5

− F6
l1
2

cosx5 − b1|x5 −
π

2
|ẋ5 − kkh(x5 − x11)

− (b2 + bkf(x5 − x11))(ẋ5 − ẋ11) + Tr1 + Tr3

I1ẍ8 =− F3
l1
2

sinx8 − F4
l1
2

cosx8 − F7
l1
2

sinx8

− F8
l1
2

cosx8 − b1|x8 −
π

2
|ẋ8 − kkh(x8 − x14)

− (b2 + bkf(x8 − x14))(ẋ8 − ẋ14) + Tr2 + Tr4

I2ẍ11 =− F5
l2
2

sinx11 − F6
l2
2

cosx11 − Fg1
l2
2

sinx11

− Fg2
l2
2

cosx11 + kkh(x5 − x11)− Tr3 − Tr5

− (b2 + bkf(x5 − x11))(ẋ11 − ẋ5)

I2ẍ14 =− F7
l2
2

sinx14 − F8
l2
2

cosx14 − Fg3
l2
2

sinx14

− Fg4
l2
2

cosx14 + kkh(x8 − x14)− Tr4 − Tr6

− (b2 + bkf(x8 − x14))(ẋ14 − ẋ8)

f(x) =max(0, x), h(x) =

0 for x 6 0

1 for x > 0

Fg1 =

−kg(xr − xr0)− bgẋr for yr − yg(xr) < 0

0 otherwise

Fg2 =

kg(yr0 − yr)− bgf(−ẏr) for yr − yg(xr) < 0

0 otherwise

Fg3 =

−kg(xl − xl0)− bgẋl) for yl − yg(xl) < 0

0 otherwise

Fg4 =

−kg(yl − yl0)− bgẏl) for yl − yg(xl) < 0

0 otherwise
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