
ORIGINAL ARTICLE

A genetic algorithm integrated with the initial solution procedure
and parameter tuning for capacitated P-median problem

Mehmet Kursat Oksuz1 • Kadir Buyukozkan2 • Alperen Bal3 • Sule Itir Satoglu4

Received: 6 April 2022 / Accepted: 26 October 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
The capacitated p-median problem is a well-known location-allocation problem that is NP-hard. We proposed an advanced

Genetic Algorithm (GA) integrated with an Initial Solution Procedure for this problem to solve the medium and large-size

instances. A 33 Full Factorial Design was performed where three levels were selected for the probability of mutation,

population size, and the number of iterations. Parameter tuning was performed to reach better performance at each

instance. MANOVA and Post-Hoc tests were performed to identify significant parameter levels, considering both com-

putational time and optimality gap percentage. Real data of Lorena and Senne (2003) and the data set presented by

Stefanello et al. (2015) were used to test the proposed algorithm, and the results were compared with those of the other

heuristics existing in the literature. The proposed GA was able to reach the optimal solution for some of the instances in

contrast to other metaheuristics and the Mat-heuristic, and it reached a solution better than the best known for the largest

instance and found near-optimal solutions for the other cases. The results show that the proposed GA has the potential to

enhance the solutions for large-scale instances. Besides, it was also shown that the parameter tuning process might improve

the solution quality in terms of the objective function and the CPU time of the proposed GA, but the magnitude of

improvement may vary among different instances.

Keyword Location-allocation � Capacitated p-median problem � Facility location � Genetic algorithm � Initial solution
algorithm � Parameter tuning

1 Introduction

The p-median is one of the most popular facility location

problems in the Operations Research literature [1]. It aims

at deciding the location of the facilities and allocating the

demand points to single or multiple facilities [2]. Those

facilities might be of various types, such as bus terminals

[3], mobile communication switches [49], emergency

facilities, such as fire stations, hospitals, shelters [4], pro-

duct distribution centers and so on. The objective of the

p-median problem is the minimization of the sum of the

total demand weighted distance to be traveled between the

medians and the demand points. The main idea is that

serving customers from several dispersed facilities instead

of a centralized one is more effective [5]. Kariv and

Hakimi [6] showed that this problem is NP-hard. However,

when the number of medians is fixed, the problem can be

solved in polynomial time [2]. When the facilities are

capacitated, the problem is called the capacitated p-median

problem (CPMP). Since the capacitated p-median problem

can be relaxed into the uncapacitated p-median version, it

can be regarded as a special case of the p-median. Hence, it

can be concluded that the capacitated problem is also NP-

hard.

There is extensive literature on the p-median problem.

Reese [2] reviewed the past studies according to the

& Sule Itir Satoglu

onbaslis@itu.edu.tr

1 Computer Engineering Department, Erzincan Binali Yildirim

University, Erzincan, Turkey

2 Industrial Engineering Department, Karadeniz Technical

University, Trabzon, Turkey

3 College of Engineering and Technology, American

University of the Middle East, Egaila 54200, Kuwait

4 Industrial Engineering Department, Istanbul Technical

University, ITU Ayazaga Kampusu, Rektorluk Binasi,

Sariyer, 34467 Istanbul, Turkey

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-022-08010-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-5791-3845
http://orcid.org/0000-0001-6321-0302
http://orcid.org/0000-0003-0675-0796
http://orcid.org/0000-0003-2768-4038
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-08010-w&domain=pdf
https://doi.org/10.1007/s00521-022-08010-w

problem type and the solution methods employed. Later,

[7] assessed the metaheuristic studies intended to solve the

p-median problem. More recent studies are summarized in

the Literature Review section of this study. Based on the

survey, the metaheuristic studies that intend to solve the

medium and large instances of the capacitated p-median

problem are limited. Authors believe that the problems are

usually large-scale in real settings and solving these

instances to optimality is difficult. Therefore, further

heuristic studies for solving the large instances of the

capacitated version of the problem are strongly needed.

The purpose of this study is to develop an advanced

Genetic Algorithm (GA) to solve the medium and large

sizes of the capacitated p-median problems. In the past, the

large and medium cases were rarely studied. However, in a

real-life setting, the problems are usually large-sized, and

these cannot be solved optimally. The challenge starts with

the metaheuristics where the solvers are not useful.

Therefore, this study strengthens the literature by solving

medium to large instances of the capacitated p-median

problems.

In this study, an Initial Solution Algorithm is first

developed and employed to reach good initial solutions.

Besides, a 33 Full Factorial Design is made where three

levels are selected for the factors of the probability of

mutation, the population size, and the number of iterations,

and parameter tuning is performed to reach a better per-

formance. The objective values of the capacitated p-me-

dian problem and the CPU times are considered as

response variables. For each parameter level, the proposed

GA is run ten times. By using the GA solution results,

MANOVA and Post-Hoc tests are performed to identify

whether the performance difference between selected

parameter levels are statistically significant for each

problem. Hence, significant parameter levels are deter-

mined, and the GA algorithm could reach better results.

Although there are past studies that suggested the use of

the initialization functions integrated into the Genetic

Algorithms, such as for the Travelling Salesman Problem

[8], none of them employed this for obtaining a better

initial population of the GA for solving the capacitated

p-median problem. So, the motivation of our study is to

enhance the performance of the GAs in terms of solution

quality and computational time, by integrating the pro-

posed Initial Solution Algorithm. Besides, as many past

studies emphasized the importance of parameter tuning for

the metaheuristic algorithms [9], we intended to improve

the GAs performance by searching and using the right

parameter values of the proposed GA for specific instances.

The unique aspect of this study is that an Initial Solution

Algorithm is adapted for the capacitated p-median problem

for the first time in the literature, to reach high-quality

initial solutions. Hence, the Genetic Algorithm may find

better solutions based on these initial ones in shorter

computational times. Another contribution of our study is

that suitable parameter values of the GA are determined by

MANOVA and Post-Hoc tests where both the CPU times

and the fitness (objective) function are considered simul-

taneously. This stage is called ‘‘Parameter Tuning’’ in our

study which enhanced the quality of the solutions and

computational times of our proposed GA, in most of the

instances.

To test the performance of our GA, it was run for the

significant parameter levels of the real data set presented by

Lorena and Senne [10], and the new data set presented by

Stefanello et al. [11]. To enhance the performance of the

GA in terms of CPU time and to avoid the trial-and-error

process for determining the suitable parameter levels,

parameter tuning is applied. The proposed GA was

employed for solving the medium and large-size problems,

and its performance was found to be better than that of the

other metaheuristics in solving several instances, which is a

distinguishing aspect of this study.

The paper is organized as follows: The capacitated

p-median studies and those that used GA for the p-median

problem are reviewed in the Literature Review section. In

the Materials and Methods section, the mathematical

model of the CPMP, the proposed GA that is integrated

with the Initial Solution Algorithm, as well as the Param-

eter Tuning and Experimental Design stages are explained.

Then, for the selected data sets, the Computational Study is

explained, and the results are presented and discussed in

the fourth section. Finally, the conclusion and future

research are presented.

2 Literature review

The facility location or location analysis problem aims at

the optimal placement of facilities by minimizing the

transportation costs and considering the factors and con-

straints associated with the specific type of facility. From

these facilities, including the central, regional depots,

transshipment depots, or a combination of them, com-

modities are distributed. The CPMP is a facility location

problem where the number and locations of facilities are

decided by minimizing the total distance traveled [12].

Many exact and heuristic algorithms have been devel-

oped to solve the CPMP in the literature. There are also

limited studies that proposed robust and stochastic opti-

mization models for the CPMP under uncertainty [13, 14].

The heuristic algorithms may be divided into two cate-

gories, namely classical heuristics, and metaheuristics. The

classical heuristics for the CPMP may be constructive,

local search, and those based on mathematical program-

ming formulations. In this class of heuristics, Lorena and

Neural Computing and Applications

123

Senne [10, 15] proposed a local search heuristic based on

the Lagrangean/surrogate relaxation techniques and a col-

umn generation approach. Under the class of exact

heuristics, Baldacci et al. [16] proposed a new exact

solution algorithm for solving the CPMP based on a set

partitioning of the problem. Besides, the branch-and-bound

[17], branch-and-price [18] [19], and cutting plane algo-

rithms [20] were employed. In addition to these, Avella

et al. [21] presented an approach based on the generation of

general cutting planes.

In the field of metaheuristics, Maniezzo et al. [22]

proposed a bionomic approach that integrated the main

steps of the bionomic algorithm with a Lagrangean-based

lower bound to the CPMP. This method is similar to GA

but differs from the use of multiple parents. Ahmadi and

Osman [23] proposed a merger of Greedy Random Adap-

tive Search Procedure (GRASP) and Adaptive Memory

Programming (AMP) into a new framework for the CPMP.

Diaz and Fernandez [24] proposed Scatter-search and Path-

relinking algorithms and applied the combination of both

algorithms to the CPMP. [25] proposed a scatter-based

heuristic approach for solving CPMP, containing a few

user-controlled parameters. Besides, Fleszar and Hindi [26]

proposed a variable neighborhood search heuristic that uses

lower bounds to assess whether each of the moves during

the neighborhood search is useful or not. Shamsipoor et al.

[27] developed a new dynamic assignment method based

on the urgency function and proposed a new neural net-

work structure. Besides, Hong et al. [28] developed a

multi-objective mathematical model for deciding the

locations of the emergency relief facilities and explained a

real-life example. Gnägi and Baumann [29] proposed a

Mat-heuristic for the CPMP. They observed that the algo-

rithm consistently performed better than the state-of-the-art

approach for the CPMP on medium and large-size

instances.

Moreover, hybrid metaheuristics are employed for the

CPMP. In an early study, Osman and Christofides [30]

proposed a hybrid metaheuristic that combines simulated

annealing and tabu-search algorithms by using a new non-

monotonic cooling schedule. Chaves et al. [31] proposed a

new hybrid heuristic called Clustering Search to solve

CPMP. This heuristic consists of detecting promising

search areas based on clustering. In recent years, Landa-

Torres et al. [32] proposed a grouping genetic algorithm

and a grouping harmony search algorithm to handle com-

plex problems. Both algorithms are hybridized with a

customized local search procedure for improving the

solution performance. In addition, Yaghini et al. [33]

proposed a hybrid metaheuristic which is composed of a

cutting-plane neighborhood structure and a tabu-search

algorithm. In a recent study, Stefanello et al. [11] proposed

a Mat-heuristic approach that combines a local search-

based metaheuristic and mathematical programming tech-

niques for the CPMP.

As for genetic algorithms, there has been an increasing

interest ever since it was invented by Holland (1992). On

the other hand, genetic algorithms were rarely used for

solving the CPMP in the literature. However, many

researchers proposed the GA for the uncapacitated p-me-

dian problem [34–37]. Fathali [36] used 40 test problems

from OR-Library and compared the proposed GA with a

variable neighborhood search algorithm. Oksuz et al. [37]

proposed a GA for the uncapacitated p-median problem

and used 15 test problems from OR-Library to test the

algorithm. The first study that used GA for the CPMP was

performed by Correa et al. [38]. In this study, a new

operator called ‘‘hyper-mutation’’ is applied right after the

random generation of the initial population and compared

with a tabu-search algorithm. The algorithm is used for a

specific real word problem which assigns 19,710 candidate

students to 26 among a set of 43 available facilities for a

university’s admission examination. However, the demand

value of the nodes (students) is fixed and equal to 1, which

is not suitable for applying the algorithm for the other types

of the p-median problem. The second study using the GA

for the CPMP was conducted by Ghoseiri and Ghannad-

pour [39], who proposed the classical assignment method

and the assignment through urgencies. Besides, Yang et al.

[40] proposed a hybrid bi-level optimization method for the

capacitated p-median problem. The proposed method

decomposes the problem into sub-problems via a mixed-

integer programming model and generates better sub-

problems by using a genetic algorithm. It was shown that

the hybrid method has good performance for large-scale

problems concerning solution time and quality. In addition

to the CPMP, the genetic algorithms have been used for

other facility location problems, such as bus terminal

location [41], e-commerce distribution center location

[42, 43], and waste recycling plant location problems [44]

The efficient use of GA is investigated in some studies.

Osaba et al. [8] studied the influence of using heuristic

initialization functions in GA and implied the efficiency of

using heuristic initialization functions. However, they also

emphasized that the excessive use of them can decrease the

exploration capacity of GA. In another study, Osaba et al.

[45] investigated the influence of using blind crossover

operators in GA. Performed experimentation showed that

the use of blind crossover operators in GA for solving

combinatorial optimization problems increases execution

time substantially and provides no significant improvement

in the results. Paul et al. [46] pointed out the importance of

deciding on problem-specific population initialization in

GA and studied different population seeding techniques for

permutation-coded genetic algorithms. A bio-inspired

crossover and mutation are used by Ravichandran et al.

Neural Computing and Applications

123

[47] to achieve a desirable amount of protection for real-

time medical image security applications. Doerr et al. [48]

discussed using different mutation rates, observing that

larger mutation rates give significantly better runtimes. In

this study, the algorithm was tested by using 10 problem

instances presented in the OR-Library. Salcedo-Sanz et al.

[49] developed a hybrid-genetic algorithm for optimal

capacitated terminal assignment problems associated with

the telecommunication networks and attempted to solve

instances with up to 100 nodes and 12 medians.

The summary of the capacitated p-median studies is

presented in Table 1. For each of the studies, the test data

used and the dimensions of the problems are indicated to

get a better insight into previous works for the CPMP. The

test data are represented by letters, and related references

are given below the table. The dimension of the largest size

problem in the data set is presented in the ’problem

dimension’ column as NxP, which are the number of

demand points and the medians, respectively.

For further investigation, [7] presented a survey of

metaheuristic approaches for solving the classical p-me-

dian problems. In addition, Reese [2] summarized the lit-

erature on solution methods for the uncapacitated and

capacitated p-median problems and presented a glossed

bibliography of different solution methods. As a result of

this comprehensive literature review, except for the three

studies mentioned above, researchers did not use the GA to

solve the medium and large-size instances of the CPMP.

This is the first study that attempts to solve medium and

large-size instances of the CPMP using the proposed

advanced GA. The real data set of Lorena and Senne [10]

and fifteen test problems of Stefanello et al. [11] were

solved very close to the best-known solutions.

3 Materials and methods

In this section, first, the mathematical model of the

capacitated p-median problem is presented and shortly

explained. Then the proposed Genetic Algorithm integrated

with the Initial Solution Algorithm and Parameter Tuning

were explained in detail.

3.1 Mathematical model

The standard mathematical formulation of the CPMP is

presented in this section. Let i represent the nodes for each

site from 1 to n, and j represents the potential location sites

from 1 to m. The potential sites form a subset of the nodes.

An integer coefficient dij describes the distance or cost

between two sites i and j. It is also assumed that dij C 0 for

all i, j. qi represents the demand of the corresponding node.

Qj represents the capacity of the potential facility location

sites. To satisfy the demand of the node, p facilities must be

located in p different sites. The objective here is to mini-

mize the total distance while assigning each node to a

facility. In the meantime, it must be assured that each

facility has enough production capacity to satisfy the

Table 1 Summary of the capacitated p-median studies

Study Method Test data set Problem dimension N9P)

[30] Hybrid metaheuristic A 100 9 10

[22] Bionomic algorithm A and 3 gen. data set 100 9 10, 50 9 5

[10] Local search heuristic A and B 100 9 10, 402 9 40

[17] Branch and bound and price alg A 100 9 10

[38] Genetic algorithm a real-world app 19,710 9 46

[15] Column generation B and C 402 9 40, 3038 9 1000

[18] Branch and price algorithm A 100 9 10

[24] Scatter search and path relinking A, B and D 100 9 10, 402 9 40, 737 9 148

[19] Branch and Price algorithm 5 generated test prob 500 9 200

[39] Genetic algorithm A 100 9 10

[26] Variable neighborhood search A, B and E 100 9 10, 402 9 40, 200 9 20

[20] Cutting plane algorithm A, B and E 100 9 10, 402 9 40, 200 9 20

[27] Neural network A and B 100 9 10, 402 9 40

[32] Hybrid metaheuristic 15 gen. test prob 500 9 50

[33] Hybrid metaheuristic A and E 100 9 10, 200 9 20

[11] Mat-heuristics A, B, C and D 100 9 10, 402 9 40, 3038 9 1000, 737 9 148

*A: [30], B: [10], C: [15], D: (Stefenallo et al., 2015), E: [16]

Neural Computing and Applications

123

demand of all its nodes. The model formulation is pre-

sented below [18]:

min
Xn

i

Xp

j

dijxij

s:t:
Xp

j

xij ¼ 1 8i 2 n ð1Þ

Xn

i

qixij �Qjyj 8j 2 m ð2Þ

Xp

j

yj ¼ p ð3Þ

xij; yj 2 0; 1f g 8i 2 n; 8j 2 m ð4Þ

There are two binary variables in the model where xij are

assignment variables and yj are location variables. Con-

straint (1) ensures that each node is allocated to one and

only one facility. Constraint (2) ensures that the sum of the

demands of the assigned nodes to each facility does not

exceed the capacity of the facility that they are assigned. In

addition to this, constraint (2) also prevents the assignment

of nodes to inactive facilities. Constraint (3) is satisfied

with the p number of facilities. Constraint (4) imposes that

xij and yj assignment variables can take the value of 1 if and

only if they are assigned and, 0 otherwise.

3.2 Genetic algorithm

Genetic algorithms (GA) are well-known evolutionary

algorithms that mimic the behavior of the genetic pro-

cesses. Although there are several well-known meta-

heuristic algorithms, some of them start from a single

solution, such as simulated annealing, tabu-search, guided

local search [50]. The advantage of the GA is that it is a

population-based algorithm and starts the solution process

from multiple initial solutions that enhances the diversifi-

cation in the population. This prevents from being stuck to

a local optimum [50].

Through all population-based algorithms, populations

must be sufficiently diverse to explore multiple regions of

the solution space [51]. Alp and Erkut (2003) mentioned in

their pioneer p-median study that Genetic Algorithms work

well for the complex optimization problems, as they retain

good solutions (individuals) with high fitness function,

eliminate poor solutions, and keep diversifying the solu-

tions by the mutation and crossover operators to reach

better ones. Corus and Oliveto [51] provided evidence that

employing both crossover and mutation operators to evolve

the populations helps find better solutions and may

improve the optimization time. Therefore, application of

both mutation and crossover operators distinguishes the

GAs from other population-based algorithms, in achieving

the diversity through the solutions. Katoch et al. [50] also

mentioned that GAs can be easily hybridized with other

optimization methods. Several facility layout problems

were solved by using GAs [50]. For these reasons, we

employed the GA for this NP-hard optimization problem,

in this study.

The Genetic Algorithm associates each chromosome

with a solution to the problem and starts with an initial

solution set or population that contains a certain number of

individuals, i.e., chromosomes. The chromosomes can also

be considered individuals. After that, it employs selection,

crossover, and mutation operators iteratively to achieve

better individuals. Then, it calculates the fitness value of

each individual. Thus, it generates neighbor solutions and

intends to reach better solutions. The reader should refer to

(Holland, 1992) and [52] for further information about the

GA. The notation used in the proposed GA is described

below:

APL: Assignment priority list

Fitness_1, Fitness_2: The Fitness values calculated

for the considered individuals.

Li1: The nearest median point with sufficient capacity

for node-i

Li2: The second nearest median point with sufficient

capacity for node-i

Di: The difference between the distance from i to Li1

and the distance from node-i to Li2.

CLi1: Unused capacity for median point Li1.

CLi2: Unused capacity for median point Li2.

Cassigned: The number of assigned demand points.

Cassigned: The number of demand points that could not

be assigned to the closest median.

M: A big penalty value.

The proposed GA starts with the definition of the values

of the necessary parameters, namely, the population size

(p_size), mutation probability (mp), and maximum itera-

tions (max_iter). Then, the algorithm calls the Initial

Solution Algorithm which intends to provide better initial

solutions and helps the GA reach near-optimal solutions in

short computational times. The pseudocode of the proposed

GA is described in Fig. 1.

3.2.1 The initial solution algorithm

Within GAs, the selection of the parents in other words

former solutions to produce new solutions is not a trivial

stage and affects the performance of the algorithm (Alp and

Erkut, 2003). Therefore, we enhanced this stage by

proposing an Initial Solution Algorithm. The proposed GA

starts with the Initial Solution Algorithm that is illustrated

in Fig. 2. It is adapted from Mulvey and Beck [53]. For the

Neural Computing and Applications

123

first individual, p-medians are randomly selected, and the

initial values of Fitness_1 and Fitness_2 are set. Later, the

Fitness Evaluation Stage-1 is run. This stage is illustrated

in Fig. 3.

The Fitness Evaluation Stage-1 will be explained at first.

The fitness value of an individual is obtained by calculating

the value of the objective function given in the mathe-

matical model. To perform this calculation, it is needed to

know which node will be re-assigned to which median,

indicated by the xij binary variable. The procedure to assign

the nodes to medians that is proposed by Correa et al. [38]

is adapted to this study. First, all distances from nodes to

median points are calculated (dij (i = 1,..,n; j = 1,..,p. Then

median points are sorted in ascending order according to dij
for each node and recorded in the Mij vector. For example,

given a problem of five medians, if the distances of the first

node to the five medians are d1j = 15–22-18–35-7 then

Mij = [5, 1, 3, 2, 4]. After that the distance value Di is

obtained by calculating the difference between the distance

from the ith node to Li1 and that distance from i to Li2, for

each node. Here, Li1 is the nearest median point with

sufficient capacity, while Li2 is the second nearest median

point that has sufficient capacity. These nodes are sorted

according to the Di values in descending order and recor-

ded in APL. According to the order of this list, nodes are

attempted to be assigned to the nearest median point. If the

demand value (qi) of node-i is greater than the capacity

(CLi1) of the Li1 median point, it then proceeds to other

nodes without assigning the ith node. After these opera-

tions are made for all the nodes, if all nodes are not

assigned, Mij and Di values are recalculated for the

unassigned nodes, and APL has generated again. This

process continues until all nodes are assigned.

During the first stage of the fitness evaluation procedure,

if there is only one median with sufficient capacity for an

unassigned node, then the Di value will be equal to the

distance from ith node to Li1. In addition, if there is no

median with sufficient capacity for an individual, then this

individual will be punished with a major penalty, and the

rest of the transaction will be skipped for this individual.

The procedure will continue for the next individuals. Thus,

the GA eventually ensures that the punished individuals

will be eliminated from the population for the next

generations.

As a result of the Fitness Evaluation Stage-1, an indi-

vidual comprising the selected medians is returned. Then,

within the Initial Solution Algorithm, for each individual

returned, the center point is calculated again for each

median, and nodes are assigned to this median. If a new

median point is found, which can improve the fitness value,

then the median point of this individual is changed. If any

of the medians of the individual change, the evaluation

procedure is restarted. After that, if the solution obtained

from the first stage of the Fitness Evaluation Procedure is

better, the central points are recalculated. Otherwise, this

individual is recorded into the population, and this process

is repeated as much as the population size. The initial

solution procedure is terminated after all the individuals are

determined. Thus, the Initial Solution Algorithm returns the

(initial) population. Among the initial solutions obtained

through the Initial Solution Algorithm, the best individual

is determined as the Best Solution. The number of itera-

tions is increased by one. Then, the Selection operator is

run to select the individuals of the next generation.

3.2.2 Selection

The ranking-based selection method [38] is applied using

Eq. (5) to select the individuals for the next generation. In

this equation, R is the list of individuals ranked in

ascending order according to the fitness value, and the

length of R is equal to p_size. Rnd is a random number

generated between 0 and 1. bb c symbol used in Eq. (5)

represents the largest integer which is smaller or equal to b.

Equation (5) gives the sequence number (j) of the indi-

vidual which will be selected from the list R. For the

selected individuals, the crossover operator is applied.

Select Rð Þ ¼

rjRjj ¼p size

�
�1þ

ffi
1þ 4rnd p size2 þ p size

� �q

2

6664

7775

8
>>><

>>>:

9
>>>=

>>>;

ð5Þ

Fig. 1 Pseudocode of the proposed GA

Neural Computing and Applications

123

Fig. 2 Flowchart of the Initial

Solution Algorithm

Neural Computing and Applications

123

Fig. 3 Flowchart of the Fitness

Evaluation Stage-1

Neural Computing and Applications

123

3.2.3 Crossover

Crossover is performed after pairing the selected individ-

uals. The crossover operator in Correa et al. [38] is adapted

to the proposed algorithm. In this process, the crossover is

applied to all individuals but not the same ones. In this

operation, some genes that are not the same are exchanged

with each other. The number of genes that will be replaced

for each pair is determined using a ‘k’ parameter obtained

by a value generated randomly. ‘k’ takes a value between 1

and the non-identical number of genes. The crossover

operator is illustrated by an instance in Fig. 4. In this

example, k is assumed as two while the non-identical gene

number is three. After the crossover operator, the mutation

operator is employed by considering the mutation proba-

bility to reach better solutions.

3.2.4 Mutation

An individual’s probability of mutation is represented by

the ‘mp’ parameter. A random number is generated

between 0 and 1 for each individual after the crossover

phase. If the generated random number is smaller than the

mp value, the mutation process is performed for the con-

cerned individual. In this process, a randomly selected

median is replaced with a randomly selected node.

3.2.5 Fitness evaluation

After both crossover and mutation operations are applied,

the Fitness value is recalculated and evaluated for the new

individuals through the Fitness Evaluation step of the

proposed GA. To be accepted into the population, new

individuals must have a better fitness value than the worst

individual in the population. This step consists of Fitness

Evaluation Stage-1 and Stage-2. The Fitness Evaluation

Stage-1 is the same as the stage of the Initial Solution

Algorithm explained in Sect. 4.

Later, the Fitness Evaluation Stage-2 is applied. Once

the assignments are made in the Fitness Evaluation Stage-

1, the algorithm proceeds to the second stage. All nodes

that could not be assigned to their closest median are

switched one by one with the other nodes that are already

assigned to the other medians. Thus, it is intended to reach

a better solution. For this operation, only the medians

whose remaining capacity is lower than the demand of the

considered nodes is taken into account.

As a result of the Fitness Evaluation stages, the indi-

vidual with the best fitness value is returned, which is

compared with the current Best Solution. If it is better than

the current Best Solution, the Best Solution is updated.

Otherwise, the Best Solution stays the same. These main

steps explained above are repeated as much as the Maxi-

mum Iterations. As soon as the iterations are completed,

the Best Solution is returned, and the GA is terminated.

3.3 Design of experiments and parameter
tuning

The parameters of a heuristic algorithm may have a great

influence on the desired output. Moreover, the time

required for the parameter setting of an algorithm some-

times far exceeds the development time [54]. Some

researchers stated that parameter tuning increases the

algorithm’s performance [9, 33, 55]. Despite this fact,

parameter tuning is usually neglected in most heuristic

studies.

In this study, a statistical design of experiments (DOE)

was conducted to determine the parameter levels of the

proposed GA for specific data sets and thus obtain better

results. For this purpose, a 33 Full Factorial Design is

performed where three levels are selected for the proba-

bility of mutation, the population size, and the number of

iterations. The objective (fitness) value and the CPU time

are considered response variables. To determine the

parameter levels, firstly, each problem was solved ten times

with the different levels of parameters. This process was

continued as long as a better result was achieved. Then,

three levels with the best result were determined for each

parameter. As a result of experiments, the population sizes

are taken as 20, 30, 40; the probability of mutations is taken

as 0.1, 0.3, 0.5 and the maximum number of iterations is

taken as 200, 250, 300 for the problem size up to 402

demand points and 40 medians. For the other larger-size

problems, the same process was conducted, and the pop-

ulation sizes are taken as 40, 60, 80; the probability of

mutations are taken as 0.3, 0.5, 0.8, and the maximum

number of iterations is taken as 300, 400, 500. It is noticed

that if the problem size increases, it gets harder to obtain

reasonable solutions. Therefore, higher parameter levels

for the algorithm are needed to get better results.

Fig. 4 An instance of the

crossover operation

Neural Computing and Applications

123

Ten runs were conducted for each combination of the

factor levels. MANOVA and Post-hoc tests which are

Duncan [56] and Tukey [57] are performed through the

SPSS software by using the GA solution results to identify

whether the performance difference between selected

parameter levels are statistically significant for each

problem set. The confidence interval is set to 95%, and

hypotheses are tested. Hence, significant parameter levels

are determined and input into the algorithm. The selected

parameters according to the DOE are shown in Table A1.

The proposed GA is tested by using the significant

parameter levels of the real data set and the new data set.

To show the impact of the parameter tuning on the per-

formance of the proposed GA, the results of real data set

instances obtained before and after parameter tuning were

compared, in the following section. The MANOVA and

Post Hoc tests and the interpretation of the test results were

explained in detail the following section for a problem

instance, where the best parameter values were determined.

4 Computational study

Two data sets were used to test the performance of the

proposed algorithm. The first one is a real data set taken

from [58] and presented by Lorena and Senne [10]. It

consists of six instances with up to 40 medians and 402

demand points. The set of problems is based on the data

collected through the Geographical Information Systems

Software for deciding the facility locations within the

central area of Sao Jose dos Campos City (SJC). The

second data set was taken from [59] and presented by

Stefanello et al. [11]. It consists of fifteen test problems

with up to 200 medians and 724 demand points. The reason

for choosing these data sets is to compare the proposed

algorithm performance with other algorithms using these

data sets.

The proposed GA was coded and implemented in

MATLAB�, and the computational tests were made on i7-

4500U CPU 2.0 GHz personal computer. The results of the

GA for the two data sets are presented in Tables 2 and 3,

respectively. Moreover, the CPU times and the gap

between the best solutions and solutions obtained by the

GA are reported.

The real data set of Lorena and Senne [10] was used to

test the performance of our algorithm in medium-size

problems, and the results are shown in Table 2. According

to the results, the optimum solution for the problem SJC2

was obtained by the proposed GA, which could not be

reported previously by any heuristic algorithm in the lit-

erature. Besides, near-optimal solutions were obtained for

other problems at reasonable CPU times. The average gap

Ta
bl
e
2

R
es
u
lt
s
fo
r
th
e
re
al

d
at
a
se
t
in
st
an
ce
s

P
ro
b
le
m

N
x
P

O
p
ti
m
u
m

G
A

V
N
S

S
S
?

P
R

N
N

G
A
P
%

O
b
j.
V
al

T
im

e
(s
ec
.)

O
b
j.
v
al

T
im

e
(s
ec
.)

O
b
j.
v
al

T
im

e
(s
ec
.)

O
b
j.
v
al

T
im

e
(s
ec
.)

G
A

V
N
S

P
R

?
S
S

N
N

S
JC

1
1
0
0
9

1
0

1
7
,2
5
2

1
7
,5
7
9

3
1

1
7
,2
8
8
,9
9

5
0
,5

1
7
,2
8
8
,9
9

1
3
,5
7

1
7
,2
8
9
,9

2
0
,3

1
,8
9
5

0
.2
1
4

0
.2
1
4

0
.2
2
0

S
JC

2
2
0
0
9

1
5

3
3
,1
8
7

3
3
,1
8
7

1
5
5

3
3
,2
7
0
,9
4

4
4
,8

3
3
,2
8
7
,9
8

9
5
,1
7

3
3
,4
5
2

8
5
,2
7

0
.0
0
0

0
.2
5
3

0
.3
0
4

0
.7
9
9

S
JC

3
a

3
0
0
9

2
5

4
5
,2
0
3

4
5
,6
3
8

2
4
8

4
5
,3
3
5
,1
6

8
5
8
0
,3

4
5
,3
4
9
,3
4

4
2
5
,2
7

4
6
,1
4
5
,1

4
6
0
,1
2

0
.9
6
2

0
.2
9
2

0
.3
2
4

2
,0
8
4

S
JC

3
b

3
0
0
9

3
0

4
0
,5
0
5

4
0
,8
5
3

6
2
1

4
0
,6
3
5
,9

2
2
9
2
,9

4
0
,6
8
4
,1
4

7
5
6
,4
4

4
0
,8
3
9

2
2
7

0
.8
5
9

0
.3
2
3

0
.4
4
2

0
.8
2
5

S
JC

4
a

4
0
2
9

3
0

6
1
,7
5
1

6
2
,6
4
2

7
9
2

6
1
,9
2
5
,5
1

4
2
2
1
,5

6
2
,0
3
0
,3

2
3
9
3
,7

6
2
,6
0
6
,1
2

1
1
6
9
,9

1
,4
4
3

0
.2
8
3

0
.4
5
2

1
,3
8
5

S
JC

4
b

4
0
2
9

4
0

5
2
,2
8
6

5
3
,1
8
0

9
2
1

5
2
,4
6
9
,9
6

3
4
7
1
,4

5
2
,5
9
4
,0
8

2
7
1
2

5
3
,1
7
8
,1
3

9
0
6

1
,7
1
0

0
.3
5
2

0
.5
8
9

1
,7
0
6

A
v
er
ag
e

1
,1
4
5

0
.2
8
6

0
.3
8
8

1
,1
7
0

G
A
G
en
et
ic

A
lg
o
ri
th
m
,
N
N

N
eu
ra
l
N
et
w
o
rk
,
S
S
?

P
R
H
y
b
ri
d
S
ca
tt
er

S
ea
rc
h
an
d
P
at
h
R
el
in
k
in
g
,
V
N
S
V
ar
ia
b
le

N
ei
g
h
b
o
rh
o
o
d
S
ea
rc
h

Neural Computing and Applications

123

between the optimum solutions and the solutions obtained

by the GA is about 1.145%, for this data set.

Moreover, the results of the proposed GA were com-

pared to those obtained by the three different metaheuris-

tics, namely Variable Neighborhood Search (VNS) [26],

hybrid scatter search, and path relinking (SS ? PR) [24],

and neural network (NN) [27]. In terms of the solution

quality (average gap), the proposed GA is better than the

NN and could compete with the other algorithms. For the

problem SJC2, the proposed GA reached the optimum, in

contrast to the other heuristics. Besides, in terms of the

computation time, it seems that our algorithm performed

much better than the others. However, it must also be noted

that the computational experiments of these techniques

were carried out on different computers that had different

CPU speeds (VNS-3.2 GHz, SS ? PR- Sun Blade

1000/750, NN-2.1 GHz, the proposed GA-2.0 GHz).

As seen in Table 2, although the VNS has a lower

average gap percentage of 0.286% compared with our

GA’s average gap percentage (1.145%), our proposed GA

has a much lower CPU time in 5 out of 6 instances. VNS

needed thousands of seconds to reach its best solution in

four larger-size instances. This shows the computational

time performance of our proposed GA. Similarly, SS ? PR

Algorithm needed a much longer CPU time than our GA to

find its best solution in 4 out of 6 instances. Besides, the

NN algorithm had a higher gap percentage, but its CPU

time was shorter than that of our GA in most of the cases.

So, in summary, our proposed GA has a much better

computational time performance compared to the VNS and

SS ? PR and can compete with the NN in terms of com-

putational time performance. So, our GA could decrease

the computational time requirements for several CPMP

data instances.

Furthermore, the new data set of Stefanello et al. [11]

was used to test the performance of the proposed GA for

larger-size problem instances. Fifteen problems with up to

200 medians and 724 demand points are considered from

this data set. The problems were solved by using the pro-

posed GA, and the results are reported in Table 3. Besides,

the problems were run in the CPLEX solver, but no solu-

tion could be found for any of the instances. In Table 3, the

best-known solutions, the solutions of Mat-heuristic

(Matheu) presented by Stefanello et al. [11], and our results

are compared. According to the results, the average gap

between the solutions of the GA and the best-known

solutions is 1.824%. As seen in Table 3, the proposed GA

improved the gap percentage in three instances (P1, P6,

P11). Furthermore, the best-known solution mentioned in

[11] was improved for the largest instance (P15), and hence

a negative gap was achieved. Better results are obtained in

five problems compared with those of the Mat-heuristic of

Stefanello et al. [11]. So, our GA has the potential to

enhance the solutions for comparatively large instances.

However, in terms of CPU times, the performance of the

Mat-heuristic is better than that of the proposed GA. It

should also be noted that the proposed GA was run by a

Table 3 Results for the new data set instances

Problem NxP Best-Known GA MatHeu GAP %

Solution Obj, val Time (s) Obj, val Time (s) GA MatHeu

P1 318 9 5 180,281 180,281 5,2 180,281 9,15 0.000 0.000

P2 318 9 15 88,901 89,142 256 88,901 26,35 0.271 0.000

P3 318 9 40 47,988,38 48,285 724 48,040,24 222,41 0.606 0.108

P4 318 9 70 32,198,64 33,085 1750 32,290,39 127,45 2,753 0.285

P5 318 9 100 22,942,69 23,958 2432 23,639,7 222,65 4,425 3,038

P6 535 9 5 9956,77 9956,77 6,3 10,337,57 7,08 0.000 3,825

P7 535 9 25 3695,15 3716,3 416 3770,45 311,36 0.572 2,038

P8 535 9 50 2461,41 2509,9 2358 2497,05 377,28 1,970 1,448

P9 535 9 100 1438,42 1501 5466 1454,48 362,75 4,351 1,117

P10 535 9 150 1032,28 1108 9078 1044,6 366,54 7,916 1,193

P11 724 9 10 181,783 181,783 410 184,031,2 6,64 0.000 1,237

P12 724 9 30 95,034,01 95,676 814 96,513,51 158,05 0.883 1,557

P13 724 9 75 54,735,05 56,363 3546 54,742,43 507,56 2,974 0.013

P14 724 9 125 38,976,76 40,749 10,196 38,992,44 509,01 4,547 0.040

P15 724 9 200 28,079,97 27,203 12,187 28,117,06 508,81 -3,123 0.132

Average 1,824 1,069

Neural Computing and Applications

123

CPU of 2.0 GHz, and the Mat-heuristic was run by a CPU

of 2.8 GHz.

Computational results indicated that if the problem size

increases, getting optimum solutions by the mathematical

model of the problem is not possible, but good solutions

could be found by the proposed GA with reasonable CPU

times. In addition, it is observed that if the N*P value

increases, it gets harder to solve the problem with similar

characteristics (such as demand/capacity ratio and dis-

tances). This has also affected the determination of the

algorithm parameters (see Table A2 in the Appendix).

These results show that effective metaheuristics are still

needed for large-size problems that cannot be solved to

optimality and achieve good solutions.

In order to show the impact of the Initial Solution

Algorithm that improves the overall performance of the

GA, we conducted a study such that we have run the GA

without the Initial Solution Algorithm for the instances

SJC1, SJC2, SJC3a, SJC3b, SJC4a, SJC4b and found some

solutions, and presented them in Table 4. We compared

them with those solutions that were already found. Both of

them are shown in Table 4. Hence, we were able to reveal

the effect of the Initial Solution Algorithm. According to

the results in Table 4, it is clear that without the Initial

Solution Algorithm, randomly generated solutions are

found that are worse than all of those solutions found by

applying the Initial Solution Algorithm, in terms of the

objective (fitness) function.

To show the impact of the parameter tuning on the

proposed GA, the results both before and after parameter

tuning are shown in Table A3, in the Appendix. In some

cases, parameter tuning has enabled the same results to be

achieved faster (SJC1), and in some cases, it has enabled

the solution to be improved in terms of the objective

function by using more CPU time (SJC2, SJC3a, SJC3b,

SJC4a). However, in one instance, the solution could not be

improved, but a very close result was obtained after

parameter tuning in a slightly shorter computational time

(SJC4b). So, this shows that the parameter tuning process

may improve the solution quality of the proposed GA, in

terms of the objective function and the CPU time.

However, the magnitude of improvement may vary among

different instances.

Specifically, we would like to explain how statistical

analysis techniques were applied for parameter tuning.

MANOVA was applied to analyze the effects of population

size, mutation probability, and maximum iteration number

parameters on objective function and CPU time. Three

values were taken for each parameter, which were found to

give the best results after sufficient trials. Therefore, a total

of 135 runs were made with 33 Full Factorial Design.

According to the results, whether the effect of each

parameter on the dependent variables was statistically

significant or not was determined by MANOVA. After-

ward, Post-hoc tests were performed to determine whether

there was a significant difference between parameter levels.

Thus, the pairwise comparative significance of the

parameters was tested. According to the results obtained,

parameter optimization was made by combining the

parameter values that give the best objective function value

and the shortest CPU time.

In order to explain the MANOVA and Post-hoc tests, the

first problem in the real dataset (SCJ1) is discussed. For

this problem, as seen in Table A4, values of 20, 40, and 60

for population size, 0.10, 0.30, and 0.50 for mutation

probability, and values of 200, 250, and 300 for maximum

iteration number were considered. According to the

MANOVA Multivariate Test results in Table A5, the effect

of all three parameters is statistically significant.

Whether the parameters are significant on the dependent

variable is determined by the Tests of Between-Subjects

Effects results in Table A6. Accordingly, it is clear that the

number of iterations is significant for both objective

function and CPU time. On the other hand, population size

and mutation probability are not significant for the objec-

tive function, but they are significant for the CPU time.

According to this result, it can be deduced that the Initial

Solution Algorithm and the crossover operator provide

sufficient diversity and the effect of population size and

mutation probability for this problem is limited.

In the second step, pairwise comparisons were made

with the Post-hoc test to determine which parameter groups

differed. According to the Tukey HSD results given in

Table 4 Impact of the initial

solution procedure
GA objective function value

Problem With initial solution procedure Without initial solution procedure Difference

SJC1 1779 17755 176

SJC2 33251 33438 187

SJC3a 45638 45834 196

SJC3b 40853 41074 221

SJC4a 62642 62942 300

SJC4b 53180 53368 188

Neural Computing and Applications

123

Table A7, while there is no significant difference in terms

of the objective function for population size (p_size) val-

ues, there is a significant difference between 20–60 and

40–60 in terms of CPU time. According to the Tukey HSD

results given in Table A8, for the mutation probability

(mp), there is a significant difference between the 0.1–0.3

and 0.1–0.5 values in terms of the objective function, while

there is no significant difference between the parameter

values in terms of CPU time.

Lastly, according to the Tukey HSD results given in

Table A9, there was a significant difference between

200–300 and 250–300 values in terms of both objective

function and CPU time for the number of iterations

(max_iter). As a result, it is clear that the key factor in

terms of CPU time for this problem is the population size

and the number of iterations. In this way, statistical anal-

yses were carried out for each problem, and optimum

parameter values were determined.

5 Conclusion

In this study, an improved GA is developed for the

capacitated p-median problem that employs an Initial

Solution Algorithm. Hence, good initial solutions are

obtained, and the computational time of the GA is reduced

considerably. This is a significant contribution of this study

to the literature.

Moreover, a 33 Full Factorial Design is performed where

three levels are selected for the factors of the probability of

mutation, the population size, and the number of iterations,

and parameter tuning is performed to reach a better per-

formance. The objective values and the CPU times are

considered as response variables. For each parameter level,

the proposed GA was run ten times. By using the GA

solution results, MANOVA and Post-Hoc Tests are per-

formed to identify whether the performance difference

between selected parameter levels is statistically significant

for each problem. Hence, significant parameter levels are

determined and input into the algorithm. The proposed GA

is solved for the significant parameter levels of the real data

set presented by Lorena and Senne [10] and the new data

set presented by Stefanello et al. [11]. The parameter tun-

ing based on statistical analysis for the GA is a significant

contribution to this study.

Besides, the results of the proposed GA are compared to

those of the three metaheuristics for the real data set of

Lorena and Senne [10]. For one of the instances, our

algorithm reached the best solution in contrast to the oth-

ers. For the other instances, our GA could reach very close

results to those of other algorithms but in considerably less

computational time. As a result, the proposed GA can solve

medium and large-size cases of the capacitated p-median

problems very close to the best-known solution in rea-

sonable computational times that show its utility.

In future studies, the proposed GA may be improved by

hybridizing it with other heuristics to obtain better results.

Besides, more up-to-date applications of the capacitated

p-median problem, such as electric vehicle charging station

location, and renewable energy generation facility location

problems can be studied in future.

Appendix A–Results of parameter tuning

See Tables 5, 6, 7, 8, 9, 10, 11, 12 and 13.

Table 5 Fine-tuned parameter values for the test problems according

to the DOE

Problem Parameters

N*P p_size mp max_iter

SJC1 1000 20 0.1 300

SJC2 3000 40 0.3 300

SJC3a 7500 30 0.5 250

SJC3b 9000 40 0.5 300

SJC4a 12.060 40 0.3 300

SJC4b 16.080 40 0.5 300

P1 1590 30 0.3 200

P2 4770 30 0.3 250

P3 12.720 40 0.5 300

P4 22.260 40 0.5 300

P5 31.800 40 0.5 300

P6 2675 40 0.3 300

P7 13.375 40 0.5 300

P8 26.750 60 0.5 400

P9 53.500 60 0.8 500

P10 80.250 80 0.8 500

P11 7240 40 0.5 300

P12 21.720 60 0.5 400

P13 54.300 80 0.8 500

P14 90.500 80 0.8 500

P15 144.800 80 0.8 500

Table 6 Parameters for different N*P values

N*P p_size (max) mp (max) max_iter

\ 20.000 40 0.5 300

\ 50.000 60 0.5 400

Others 80 0.8 500

Neural Computing and Applications

123

Table 7 Impact of the parameter tuning

GA (before parameter tuning) GA (after parameter tuning)

Problem Objective CPU time (s) p_size mp max_iter Objective CPU time (s) p_size mp max_iter

SJC1 17579 44 60 0.8 300 17579 31 20 0.1 300

SJC2 33251 130 60 0.9 250 33187 105 40 0.3 300

SJC3a 46138 177 40 0.8 200 45638 168 30 0.5 250

SJC3b 41107 426 60 0.8 250 40853 221 40 0.5 300

SJC4a 62898 778 60 0.8 300 62642 642 40 0.3 300

SJC4b 53176 1023 60 0.9 350 53176 921 40 0.5 300

Table 8 Analyzed parameter

values for the real data problem

SJC1

Between-subjects factors

N

Population size (p_size) 20 45

40 45

60 45

Mutation Probability (mp) 0.10 45

0.30 45

0.50 45

Max Number of iterations (max_iter) 200 45

250 45

300 45

Table 9 MANOVA

multivariate test results
Multivariate tests

Effect Value F Hypothesis df Error df Sig

Intercept Pillai’s Trace 1,000 185,589,832 2,000 112,000 0,000

Wilks’ Lambda ,000 185,589,832 2,000 112,000 0,000

Hotelling’s Trace 3314,104 185,589,832 2,000 112,000 ,000

Roy’s Largest Root 3314,104 185,589,832 2,000 112,000 ,000

p_size Pillai’s Trace ,813 38,676 4,000 226,000 ,000

Wilks’ Lambda ,193 71,352 4,000 224,000 ,000

Hotelling’s Trace 4,140 114,893 4,000 222,000 ,000

Roy’s Largest Root 4,133 233,496 2,000 113,000 ,000

mp Pillai’s Trace ,146 4,437 4,000 226,000 ,002

Wilks’ Lambda ,855 4,554 4,000 224,000 ,001

Hotelling’s Trace ,168 4,669 4,000 222,000 ,001

Roy’s Largest Root ,162 9,146 2,000 113,000 ,000

max_iter Pillai’s Trace ,139 4,219 4,000 226,000 ,003

Wilks’ Lambda ,862 4,305 4,000 224,000 ,002

Hotelling’s Trace ,158 4,388 4,000 222,000 ,002

Roy’s Largest Root ,148 8,349 2,000 113,000 ,000

Neural Computing and Applications

123

Table 10 MANOVA tests of between-subjects effects

Tests of between-subjects effects

Source Dependent variable Type III sum of squares df Mean square F Sig.

Corrected model Objective 9,070,489,871a 21 431,928,089 8,092 ,000

CPU_time 33,791,259b 21 1609,108 50,226 ,000

Intercept Objective 19,066,944,736,186 1 19,066,944,736,186 357,202,082 ,000

CPU_time 43,770,891 1 43,770,891 1366,257 ,000

p_size Objective 126,812,995 2 63,406,497 1,188 ,309

CPU_time 14,292,625 2 7146,313 223,064 ,000

mp Objective 944,420,210 2 472,210,105 8,846 ,000

CPU_time 23,490 2 11,745 ,367 ,694

max_iter Objective 770,295,299 2 385,147,650 7,215 ,001

CPU_time 172,583 2 86,292 2,693 ,002

a. R Squared = ,601 (Adjusted R Squared = ,526)
b. R Squared = ,903 (Adjusted R Squared = ,885)

Table 11 Result of Post-hoc test for the population size (p_size)

Multiple comparisons

Dependent variable (I) p_zsize (J) p_size Mean difference (I–J) Std. Error Sig 95% Confidence interval

Lower bound Upper bound

Objective Tukey HSD 20 40 19,47 48,707 ,916 - 96,21 135,15

60 - 76,53 48,707 ,262 - 192,21 39,15

40 20 - 19,47 48,707 ,916 - 135,15 96,21

60 - 96,00 48,707 ,124 - 211,68 19,68

60 20 76,53 48,707 ,262 - 39,15 192,21

40 96,00 48,707 ,124 - 19,68 211,68

CPU_time Tukey HSD 20 40 - 1,4867 1,19,326 ,429 - 4,3207 1,3473

60 - 33,2267* 1,19,326 ,000 - 36,0607 - 30,3927

40 20 1,4867 1,19,326 0,429 - 1,3473 4,3207

60 - 31,7400* 1,19,326 ,000 - 34,5740 - 28,9060

60 20 33,2267* 1,19,326 ,000 30,3927 36,0607

40 31,7400* 1,19,326 ,000 28,9060 34,5740

*Significant

Neural Computing and Applications

123

Acknowledgements This study has been financially supported by the

Turkish National Science Foundation (TUBITAK) with project

number 215M143.

Data availability The authors acknowledge that the data sets used in

this study were obtained from [58] and [59]. The addresses of these

websites are presented in the References.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

1. Cruz C, Pelta D (2009) Soft computing and cooperative strategies

for optimization. Appl Soft Comput 9(1):30–38

2. Reese J (2006) Solution methods for the p-median problem: an

annotated bibliography. Networks 48(3):125–142

3. Djenić A, Radojičić N, Marić M, Mladenović M (2016) Parallel

VNS for bus terminal location problem. Appl Soft Comput

42:448–458

Table 12 Result of post-hoc test for the mutation probability (mp)

Multiple comparisons

Dependent variable (I) mp (J) mp Mean difference (I–J) Std, Error Sig 95% Confidence interval

Lower bound Upper bound

Objective Tukey HSD ,10 0,30 406,47* 48,707 0,000 290,79 522,15

0,50 406,33* 48,707 0,000 290,65 522,01

,30 ,10 - 406,47* 48,707 ,000 - 522,15 - 290,79

,50 - ,13 48,707 1,000 - 115,81 115,55

,50 ,10 - 406,33* 48,707 ,000 - 522,01 - 290,65

,30 0,13 48,707 1,000 - 115,55 115,81

CPU_time Tukey HSD ,10 ,30 4,4222* 1,19,326 ,001 1,5882 7,2562

,50 - 9,1356* 1,19,326 ,000 - 11,9695 - 6,3016

,30 ,10 - 4,4222* 1,19,326 ,001 - 7,2562 - 1,5882

,50 - 13,5578* 1,19,326 ,000 - 16,3918 - 10,7238

,50 ,10 9,1356* 1,19,326 ,000 6,3016 11,9695

,30 13,5578* 1,19,326 ,000 10,7238 16,3918

*Significant

Table 13 Result of post-hoc test for the iteration number (max_iter)

Multiple comparisons

Dependent variable (I) max_iter (J) max_iter Mean difference (I–J) Std, Error Sig 95% Confidence interval

Lower bound Upper bound

Objective Tukey HSD 200 250 - 20,29 48,707 ,909 - 135,97 95,39

300 240,69* 48,707 ,000 125,01 356,37

250 200 20,29 48,707 ,909 - 95,39 135,97

300 260,98* 48,707 ,000 145,30 376,66

300 200 - 240,69* 48,707 ,000 - 356,37 - 125,01

250 - 260,98* 48,707 ,000 - 376,66 - 145,30

CPU_time Tukey HSD 200 250 - 2,0400 1,19,326 ,206 - 4,8740 ,7940

300 - 15,3667* 1,19,326 ,000 - 18,2007 - 12,5327

250 200 2,0400 1,19,326 ,206 - ,7940 4,8740

300 - 13,3267* 1,19,326 ,000 - 16,1607 - 10,4927

300 200 15,3667* 1,19,326 ,000 12,5327 18,2007

250 13,3267* 1,19,326 ,000 10,4927 16,1607

*Significant

Neural Computing and Applications

123

4. Zheng YJ, Chen SY, Ling HF (2015) Evolutionary optimization

for disaster relief operations: a survey. Appl Soft Comput

27:553–566

5. Satoglu SI, Durmusoglu MB, Dogan I (2006) Evaluation of the

conversion from central storage to decentralized storages in cel-

lular manufacturing environments using activity-based costing.

Int J Prod Econ 103(2):616–632

6. Kariv O, Hakimi SL (1979) An algorithmic approach to network

location problems. II: The p-medians. SIAM J Appl Math

37(3):539–560

7. Mladenović N, Brimberg J, Hansen P, Moreno-Pérez JA (2007)

The p-median problem: a survey of metaheuristic approaches.

Eur J Oper Res 179(3):927–939

8. Osaba E, Carballedo R, Diaz F, Onieva E, Lopez P, Perallos A

(2014a) On the influence of using initialization functions on

genetic algorithms solving combinatorial optimization problems:

a first study on the TSP. In: IEEE conference on evolving and

adaptive intelligent systems (EAIS) (pp 1–6). IEEE

9. Veček N, Mernik M, Filipič B, Črepinšek M (2016) Parameter

tuning with chess rating system (CRS-Tuning) for meta-heuristic

algorithms. Inf Sci 372:446–469

10. Lorena LAN, Senne ELF (2003) Local search heuristics for

capacitated p-median problems. Netw Spat Econ 3(4):407–419

11. Stefanello F, de Araújo OC, Müller FM (2015) Matheuristics for

the capacitated p-median problem. Int Trans Oper Res

22(1):149–167

12. Jamshidi M (2009) Median location problem. In: Hekmatfar M

(ed) Zanjirani Farahani, Reza. Physica-Verlag, Facility Location,

pp 177–191

13. Baldacci R, Caserta M, Traversi E, Wolfler Calvo R (2022)

Robustness of solutions to the capacitated facility location

problem with uncertain demand. Optim Lett 16:2711–2727

14. Ryu J, Park S (2022) A branch-and-price algorithm for the robust

single-source capacitated facility location problem under demand

uncertainty. EURO J Trans Logistics 11:100069

15. Lorena LAN, Senne ELF (2004) A column generation approach

to capacitated p-median problems. Comput Oper Res

31(6):863–876

16. Baldacci R, Hadjiconstantinou E, Maniezzo V, Mingozzi A

(2002) A new method for solving capacitated location problems

based on a set partitioning approach. Comput Oper Res

29(4):365–386

17. Ceselli A (2003) Two exact algorithms for the capacitated

p-median problem. Q J Belg Fr Ital Oper Res Soc 1(4):319–340

18. Ceselli A, Righini G (2005) A branch-and-price algorithm for the

capacitated p-median problem. Networks 45:125–142

19. Klose A, Görtz S (2007) A branch-and-price algorithm for the

capacitated facility location problem. Eur J Oper Res

179(3):1109–1125

20. Boccia M, Sforza A, Sterle C, Vasilyev I (2008) A cut and branch

approach for the capacitated p-median problem based on Fenchel

cutting planes. J Math Modell Algorithms 7(1):43–58

21. Avella P, Boccia M, Mattia S (2013) A branch-and-cut algorithm

for the single-source capacitated facility location problem. In:

Advanced logistics and transport (ICALT), 2013 international

conference on (pp 181–186). IEEE

22. Maniezzo V, Mingozzi A, Baldacci R (1998) A bionomic

approach to the capacitated p-medianproblem. J Heuristics

4(3):263–280

23. Ahmadi S, Osman IH (2005) Greedy random adaptive memory

programming search for the capacitated clustering problem. Eur J

Oper Res 162(1):30–44

24. Diaz JA, Fernandez E (2006) Hybrid scatter search and path

relinking for the capacitated p-median problem. Eur J Oper Res

169(2):570–585

25. Scheuerer S, Wendolsky R (2006) A scatter search heuristic for

the capacitated clustering problem. Eur J Oper Res

169(2):533–547

26. Fleszar K, Hindi KS (2008) An effective VNS for the capacitated

p-median problem. Eur J Oper Res 191(3):612–622

27. Shamsipoor H, Sandidzadeh MA, Yaghini M (2012) Solving

capacitated p-median problem by a new structure of neural net-

work. Int J Ind EngTheory Appl Pract 19(8):305–319

28. Hong JD, Jeong KY, Xie Y (2015) A multi-objective approach to

planning in emergency logistics network design. Int J Indus Eng

Eng Theory Appl Practice 22(4):412–425

29. Gnägi M, Baumann P (2021) A matheuristic for large-scale

capacitated clustering. Comput Oper Res 132:105304

30. Osman IH, Christofides N (1994) Capacitated clustering prob-

lems by hybrid simulated annealing and tabu search. Int Trans

Oper Res 1(3):317–336

31. Chaves AA, de Assis Correa F, Lorena LAN (2007) Clustering

search heuristic for the capacitated p-median problem. In: Emilio

CR, Manuel J, Abraham A (eds) Innovations in hybrid intelligent

systems, Corchado. Springer, Berlin Heidelberg, pp 136–143

32. Landa-Torres I, Del Ser J, Salcedo-Sanz S, Gil-Lopez S, Portilla-

Figueras JA, Alonso-Garrido O (2012) A comparative study of

two hybrid grouping evolutionary techniques for the capacitated

P-median problem. Comput Oper Res 39(9):2214–2222

33. Yaghini M, Karimi M, Rahbar M (2013) A hybrid metaheuristic

approach for the capacitated p-median problem. Appl Soft

Comput 13(9):3922–3930

34. Alp O, Erkut E, Drezner Z (2003) An efficient genetic algorithm

for the p-median problem. Ann Oper Res 122(1–4):21–42

35. Bozkaya B, Zhang J, Erkut E (2002) An efficient genetic algo-

rithm for the p-median problem. In: Drezner Z, Hamacher HW

(eds) Facility location: applications and theory. Springer Verlag,

Berlin, New York, pp 179–205

36. Fathali J (2006) A genetic algorithm for the p-median problem

with pos/neg weights. Appl Math Comput 183(2):1071–1083

37. Oksuz MK, Satoglu SI, Kayakutlu G, Buyukozkan K (2016) A

genetic algorithm for p-median facility location problem. In:

Global joint conference on industrial engineering and its appli-

cation areas (GCJIE 2016), Istanbul, Turkey, July 14–15

38. Correa ES, Steiner MTA, Freitas AA, Carnieri C (2004) A

genetic algorithm for solving a capacitated p-median problem.

Numer Algorithms 35(2–4):373–388

39. Ghoseiri K, Ghannadpour SF (2007) Solving a capacitated

p-median problem using genetic algorithm. In: IEEE international

conference on industrial engineering and engineering manage-

ment, (pp 885–889). IEEE

40. Yang K, Wang R, He H, Yang X, Zhang G (2021) Multi-supply

multi-capacitated p-median location optimization via a hybrid bi-

level intelligent algorithm. Comput Ind Eng 160:107584

41. Taghavi A, Ghanbari R, Ghorbani-Moghadam K, Davoodi A,

Emrouznejad A (2022) A genetic algorithm for solving bus ter-

minal location problem using data envelopment analysis with

multi-objective programming. Ann Oper Res 309:259–276

42. Liu D (2014) Network site optimization of reverse logistics for

E-commerce based on genetic algorithm. Neural Comput Appl

25(1):67–71

43. Guo K (2020) Research on location selection model of distribu-

tion network with constrained line constraints based on genetic

algorithm. Neural Comput Appl 32(6):1679–1689

44. Liu J, Xiao Y, Wang D, Pang Y (2019) Optimization of site

selection for construction and demolition waste recycling plant

using genetic algorithm. Neural Comput Appl 31(1):233–245

45. Osaba E, Carballedo R, Diaz F, Onieva E, De La Iglesia I, Per-

allos A (2014) Crossover versus mutation: a comparative analysis

of the evolutionary strategy of genetic algorithms applied to

combinatorial optimization problems. Sci World J 2014:1–22

Neural Computing and Applications

123

46. Paul PV, Moganarangan N, Kumar SS, Raju R, Vengattaraman T,

Dhavachelvan P (2015) Performance analyses overpopulation

seeding techniques of the permutation-coded genetic algorithm:

an empirical study based on traveling salesman problems. Appl

Soft Comput 32:383–402

47. Ravichandran D, Praveenkumar P, Rayappan JBB, Amirtharajan

R (2016) Chaos-based crossover and mutation for securing

DICOM image. Comput Biol Med 72:170–184

48. Doerr B, Le HP, Makhmara R, Nguyen, TD (2017) Fast genetic

algorithms. In: Proceedings of the genetic and evolutionary

computation conference (pp 777–784). ACM

49. Salcedo-Sanz S, Portilla-Figueras JA, Ortiz-Garcı́a EG, Pérez-

Bellido AM, Thraves C, Fernández-Anta A, Yao X (2008)

Optimal switch location in mobile communication networks

using hybrid genetic algorithms. Appl Soft Comput

8(4):1486–1497

50. Katoch S, Chauhan SS, Kumar V (2021) A review on genetic

algorithm: past, present, and future. Multimed Tools Appl

80(5):8091–8126

51. Corus D, Oliveto PS (2020) On the benefits of populations for the

exploitation speed of standard steady-state genetic algorithms.

Algorithmica 82:3676–3706

52. Reeves C (2003) Genetic algorithms. Springer, USA

53. Mulvey JM, Beck MP (1984) Solving capacitated clustering

problems. Eur J Oper Res 18(3):339–348

54. Adenso-Diaz B, Laguna M (2006) Fine-tuning of algorithms

using fractional experimental designs and local search. Oper Res

54(1):99–114

55. Buyukozkan K, Kucukkoc I, Satoglu SI, Zhang DZ (2016) Lex-

icographic bottleneck mixed-model assembly line balancing

problem: artificial bee colony and tabu search approaches with

optimized parameters. Expert Syst Appl 50:151–166

56. Duncan DB (1955) Multiple ranges and multiple F tests. Bio-

metrics 11:1–42

57. Tukey J (1949) Comparing individual means in the analysis of

variance. Biometrics 5(2):99–114

58. Url-1. http://www.lac.inpe.br/*lorena/instancias.html. Last

access date: June 1st, 2021

59. Url-2. http://www-usr.inf.ufsm.br/*stefanello/instances/CPMP/

group2/. Last access date: July 12st, 2021

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Neural Computing and Applications

123

http://www.lac.inpe.br/~lorena/instancias.html
http://www-usr.inf.ufsm.br/~stefanello/instances/CPMP/group2/
http://www-usr.inf.ufsm.br/~stefanello/instances/CPMP/group2/

	A genetic algorithm integrated with the initial solution procedure and parameter tuning for capacitated P-median problem
	Abstract
	Introduction
	Literature review
	Materials and methods
	Mathematical model
	Genetic algorithm
	The initial solution algorithm
	Selection
	Crossover
	Mutation
	Fitness evaluation

	Design of experiments and parameter tuning

	Computational study
	Conclusion
	Appendix A--Results of parameter tuning
	Data availability
	References

