

Deliverable 2.2 – System Architecture Design and

Specification Report

Deliverable type R- Document, Report

Dissemination level PU- Public

Due date (month) M7

Delivery submission date 31.08.2023

Work package number 2

Lead beneficiary IOTIQ GMBH

This project has received funding from the Horizon Europe Framework Programme

of the European Union under grant agreement No. 101094428

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 1

Funded by the European Union. Views and opinions expressed are however those of the author(s)

only and do not necessarily reflect those of the European Union or European Commission. Neither

the European Union nor the granting authority can be held responsible for them.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 2

Document Information

Project number 101094428 Acronym CULTURATI

Project name Customized Games and Routes For Cultural Heritage and Arts

Call HORIZON-CL2-2022-HERITAGE-01

Topic HORIZON-CL2-2022-HERITAGE-01-02

Type of action HORIZON-RIA

Project starting date 1 February 2023 Project duration 36 months

Project URL http://www.culturati.eu

Document URL https://culturati.eu/deliverables/

Deliverable number D2.2

Deliverable name System Architecture Design and Specification Report

Work package number WP2

Work package name System Development and Evaluation

Date of delivery M7 M7

Version Version 1.0

Lead beneficiary IOTIQ GMBH

Responsible author(s) Metin Tekkalmaz, IOTIQ, metin@iotiq.de

Reviewer(s) Angel Lagares, NIMBEO, alagares@nimbeo.com

Santiago Rondon, NIMBEO, srondon@nimbeo.com

Neşe Şahin Özçelik, Bilkent Universitesi Vakıf, nozcelik@bilkent.edu.tr

Arzu Sibel İkinci, Bilkent Universitesi Vakıf, aikinci@bilkent.edu.tr

Eda Gürel, Bilkent Universitesi Vakıf, eda@tourism.bilkent.edu.tr

Short Description This deliverable is intended to be the reference document for developing

the system architecture of CULTURATI. This document aims to provide

information on the modular reference architecture specification, the

modules' interfaces, and the data flow between them.

History of Changes

Date Version Author Remarks

01.07.2023 Draft 0.1 Metin Tekkalmaz First Version

http://www.culturati.eu/
https://culturati.eu/deliverables/
mailto:metin@iotiq.de
mailto:alagares@nimbeo.com
mailto:srondon@nimbeo.com
mailto:nozcelik@bilkent.edu.tr
mailto:aikinci@bilkent.edu.tr
mailto:eda@tourism.bilkent.edu.tr

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 3

31.07.2023 Final 1.0 Metin Tekkalmaz Revised After Review

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 4

Executive Summary

The System Architecture Design and Specification document outlines the design and implementation

of an innovative application that seamlessly combines Java Spring Boot, React.JS, and Artificial

Intelligence (AI) algorithms to create a personalized visitor experience. The proposed system aims to

optimize visitor flow in indoor and outdoor spaces while providing guided tours and detailed

information through a connected Wiki.JS library. The system also has a platform for content creators

to create customized content.

The application will be developed with a micro-services architecture to ensure modularity and

scalability. The back end will utilize Java Spring Boot, offering a robust and flexible foundation for

handling various functionalities, including user management, AI algorithms, and database

interactions. The micro-services approach allows for independent development and deployment of

specific components, enhancing maintainability and reducing dependencies.

The front-end will be developed using React.JS, providing a modern and responsive user interface for

visitors to access personalized routes and guided tours. React's component-based architecture

promotes re-usability and enhances the overall user experience, accommodating visitors from

different devices and platforms.

The core feature of the system involves the integration of AI algorithms to analyze real-time data

and identify visitor traffic on each site. By leveraging AI, the application can optimize visitor flows,

minimize congestion, and provide an enhanced visiting experience. The AI algorithms will also

enable personalized routes for visitors, offering tailored tours based on their interests and

preferences.

To support the site’s Wiki module, the system will seamlessly connect to a Wiki.JS library. This Wiki

module will contain comprehensive information about registered sites, allowing visitors to access

general details, historical insights, and exhibit information. Visitors will also have the ability to post

comments, share experiences, and interact with the community. The Wiki module will also offer an

administration role to manage and update information about the site.

The system architecture emphasizes security and data privacy. Robust authentication and

authorization mechanisms will be implemented to safeguard sensitive information, ensuring that

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 5

only authorized users have access to specific features and data. Data encryption will be applied to

protect user information and maintain compliance with data protection regulations.

The system will utilize RESTful APIs to facilitate seamless communication between different

modules. This approach allows for the smooth integration of data and functionalities across the

entire system, enabling real-time updates and ensuring data consistency.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 6

Table of Contents

Executive Summary ... 4

Table of Contents .. 6

Index of Figures ... 7

1. Introduction .. 9

2. CULTURATI General Architecture ... 10

2.1. General Architecture of the Project .. 11

3. CULTURATI Core Application .. 12

3.1. Navigational Subsystem (Path Planning Subsystem) .. 14

3.2. Area Mapping Subsystem ... 15

3.3. Artificial intelligence Subsystem ... 18

3.4. IoT Subsystem ... 20

3.5. Educational Subsystem (Gamification Module) .. 21

3.6. System Architecture .. 23

3.6.1. Back-end Architecture .. 25

3.6.2. Front-end Architecture ... 29

3.6.3. Authentication and Authorization .. 33

3.7. Communication Between Software Components .. 33

3.7.1. Core Back-end and Front-end ... 33

3.7.2. Internal Communication of the Core Back-end .. 34

3.7.3. Core Back-end and the Wiki instance ... 34

3.7.4. Core Back-end and the AI Module .. 36

3.8. Version Control Practices .. 36

4. NIMBEO Architecture .. 37

4.1. Key aspects of the Wiki ... 37

4.1.1. CULTURATI wiki side overview .. 38

4.1.2. Data Architecture .. 43

4.1.3. Integration and API's ... 45

Conclusion ... 47

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 7

Index of Figures

Figure 1: System Flow Chart ... 10

Figure 2: General System Architecture ... 12

Figure 3: Modular Reference Architecture showing the overall core backend structure and

relationships. ... 13

Figure 4: Data flow diagram of routing with the navigational subsystem. ... 14

Figure 5: Data flow diagram of a user with the admin role, uploading the map area data of their

tenant and adding the location of an entity ... 16

Figure 6: Data flow diagram of a user viewing the area map of their desired tenant.......................... 16

Figure 7: Data flow diagram of the AI module requesting the graph of the navigable entities

belonging to a tenant .. 17

Figure 8: The general architecture of the IoT subsystem. .. 20

Figure 9: Data flow diagram of collection of crowd data. .. 21

Figure 10: Data flow diagram of question generation .. 22

Figure 11: Core Back-end Architecture ... 24

Figure 12: General architecture of the submodules and packages of the Core Back-end Application 26

Figure 13: CULTURATI Front-end Component .. 32

Figure 14: Diagram showing the authorization flow for requests made to the wiki instance 35

Figure 15: Wiki’s General Process ... 39

Figure 16: Wiki Authentication Process ... 42

Figure 17: Wiki Extension Rendering Module Flow .. 43

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 8

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 9

1. Introduction

CULTURATI aims to foster and enhance visitor learning and experiences at indoor and outdoor

attractions, museums, national parks, gardens, and various sites of cultural and artistic significance.

At its core, CULTURATI represents a trans-formative method of delivering information to visitors,

enriching their understanding and appreciation of cultural heritage and artistic wonders. By

seamlessly integrating education and navigation subsystems, this innovative system offers

customized Q&A games and personalized routes, ensuring that each visitor embarks on a unique

journey tailored to their interests and preferences.

CULTURATI serves a diverse user base, catering to both administrators of attractions, creative

professionals, and citizens with cultural expertise (content creators), as well as visitors seeking

knowledge, information, and direction (end-users and customers of cultural heritage and arts). By

bridging the gap between content creators and enthusiasts, the platform fosters an inclusive and

collaborative environment, encouraging the exchange of insights and enriching the collective

cultural experience.

The Education Subsystem of CULTURATI engages visitors through captivating Q&A games, delivering

information in an interactive and enjoyable manner. By customizing the content to suit the interests

of each individual, the system promotes a deeper understanding of artworks, historical events, and

cultural nuances. The Education Subsystem not only enhances visitors' knowledge but also nurtures

their curiosity, inspiring a lifelong love for cultural exploration.

Complementing the Education Subsystem is the Navigation Subsystem, which offers personalized

routes through attractions and sites. Powered by a sophisticated algorithm, CULTURATI dynamically

curates routes that align with visitors' preferences, allowing them to experience the cultural heritage

and arts at their own pace and according to their unique interests. This navigation feature optimizes

visitor flow, ensuring a seamless and fulfilling experience for all.

The central premise of CULTURATI revolves around delivering the right information to the right

person at the right time. As visitors engage with the platform, they unlock a wealth of insights into

the works of art, history, and cultural significance presented in a manner that resonates with their

individual inclinations. This tailored approach empowers users to forge meaningful connections with

the cultural and artistic aspects that matter most to them.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 10

2. CULTURATI General Architecture

The first architecture shows a core vision of the project, covering the aspects of the Artificial

Intelligence sub-system to provide the right information to the right person at the right time, these

algorithms will be in charge of the selection of that person and that time based on the data from the

Internet of Things module. Subsequently, it includes using sensors that will obtain the necessary

data so that the algorithms that apply Artificial Intelligence can provide accurate information to each

visitor.

The second architecture shows the architecture of the part of the project that will be carried out by

NIMBEO and has all the details regarding the Wiki, this is responsible for storing all the information

of the places and visitors can interact with it.

Figure 1: System Flow Chart

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 11

2.1. General Architecture of the Project

The architecture of the project is designed to deliver a cutting-edge and interconnected ecosystem

that harmoniously integrates two distinct but synergistic platforms: The core feature of the system

involves the integration of AI algorithms to analyze real-time data and identify visitor traffic on each

site. By leveraging AI, the application can optimize visitor flows, minimize congestion, and provide an

enhanced visiting experience. The AI algorithms will also enable personalized routes for visitors,

offering tailored tours based on their interests and preferences. and the Wiki module will contain

comprehensive information about registered sites, allowing visitors to access general details,

historical insights, and information. The project's overarching objective is to provide users an

immersive and enriching experience engaging with cultural heritage and arts while fostering

collaboration and knowledge-sharing.

Real time data and location: CULTURATI is an innovative platform that re-imagines cultural heritage

and arts experiences using real-time data and location-driven technologies. The platform

dynamically curates personalized games and routes for each user, optimizing their interactions at

venues and site-based cultural institutions. By detecting user movements through sensors and GPS,

CULTURATI delivers relevant information to visitors.

This dynamic approach ensures a seamless and immersive cultural exploration, fostering a deeper

connection between users and the rich cultural heritage they encounter. Additionally, CULTURATI

efficiently manages visitor flow, enhancing crowd management and creating an enjoyable

experience for all.

Artificial Intelligence Integration: The AI Subsystem and IoT capabilities (coming from the IoT

Subsystem) will be utilized to optimizebalance the number of people in various locations according

to carrying capacities and user interests to enhance the overall user experience. While doing this,

the AI Subsystem will take the user interests into account to generate optimal paths for users.

Gamification Module: The Gamification Module interacts with the AI Subsystem, which is

responsible for question generation. The AI Subsystem dynamically creates quiz questions, which are

then reviewed and approved by curators.

Content Management Sub-system (wiki): The content management subsystem acts as a central

repository for all relevant information about the sites, its exhibits, and its layout. It stores data such

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 12

as exhibit locations, descriptions, multimedia content, accessibility information, and any other

relevant details.

Figure 2: General System Architecture

3. CULTURATI Core Application

The CULTURATI Core Application consists of the Navigational Subsystem, the Area Mapping

Subsystem, the AI Subsystem, the IoT Subsystem and Educational Subsystem. It consolidates these

subsystems and orchestrates their functionalities while integrating with the Content Management

Subsystem (Wiki) to provide the users of CULTURATI with a seamless experience.

This section of the document details the composition and communication of the subsystems

mentioned above.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 13

Figure 3: Modular Reference Architecture showing the overall core backend structure and relationships.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 14

3.1. Navigational Subsystem (Path Planning Subsystem)

The path planning subsystem plays a crucial role in the CULTURATI application, ensuring that users

can efficiently navigate the designated area while enjoying a personalized and enriching experience.

To accomplish this, the path planning subsystem spans several modules, each contributing specific

functionalities to enhance the overall user experience.

Figure 4: Data flow diagram of routing with the navigational subsystem.

Content Management Subsystem:

The content management subsystem is responsible for curating and managing a diverse range of

cultural information, historical facts, points of interest, and relevant content about the area. It

gathers data from various reliable sources, including museums, cultural institutions, historical

records, and local experts. This data is then organized, updated, and made available to the path

planning subsystem to consider while generating paths for users.

AI Subsystem:The AI subsystem is a critical component of the CULTURATI application, leveraging

artificial intelligence and machine learning algorithms to analyze user behavior, preferences, and

historical data. By employing AI, the path planning subsystem can adapt and improve its

recommendations over time based on user feedback and interaction patterns.

The path recommendation system employed by the AI Subsystem leverages a combination of visitor

interests and real-time foot traffic data. By seamlessly integrating these two critical elements, the

system intelligently guides visitors through the site, suggesting optimal pathways based on their

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 15

preferences while also accounting for current congestion levels. This dynamic synergy ensures a

personalized and efficient exploration, enhancing visitor satisfaction and enabling site managers to

maintain a harmonious and secure environment.

IoT Subsystem:

The IoT (Internet of Things) subsystem is responsible for collecting real-time sensor data from the

designated area. These IoT sensors may include environmental sensors, crowd density detectors,

temperature and weather sensors, and other relevant devices. By integrating sensor data with the

path planning subsystem, the application can optimize paths based on the current conditions of the

area. For example, during crowded times the path planning system can dynamically adjust routes to

avoid congested areas, ensuring a smooth and pleasant experience for the users while managing the

crowds in the area.

CULTURATI Directions API:

The CULTURATI Directions API consolidates the information coming from the AI Subsystem and real

time geospatial data of the area to find routes the users can traverse. The Directions API uses both

the geospatial data from external sources for outdoor navigation and indoor maps of the sites for

indoor navigation. The indoor area maps will be tagged with Simple Indoor Tagging1 guidelines that

enable tagging building levels; traversable areas like rooms and corridors; obstructions like walls;

connections like doors and windows. Using these indoor tags, the CULTURATI Directions API

provides wayfinding indoors. Outdoor wayfinding will be done by external Direction APIs and will be

merged with indoor wayfinding results to provide a seamless experience.

External Directions API:

Leveraging the existing solutions for outdoor routing, the Navigational Subsystem integrates an

external directions API to complement its own directions API. This integration capitalizes on the well-

established expertise in outdoor routing of Open Route Service2, allowing the CULTURATI Directions

Module to provide robust and accurate navigation services to users.

3.2. Area Mapping Subsystem

Area mapping is one of the core components of the CULTURATI application benefiting site

administrators, curators and visitors. It enables administrators and curators to visually represent the

1
 https://wiki.openstreetmap.org/wiki/Simple_Indoor_Tagging

2
 https://openrouteservice.org/

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 16

areas and place objects and artworks. Meanwhile, mobile user interface users are facilitated with an

intuitive means of navigating these areas through visual cues and route guidance.

The Area Mapping Subsystem functions as a pivotal component, catering to both user interactions

and facilitating the AI subsystem. Its role encompasses user input management for area mapping

and visualization, while also serving the AI module by generating navigable entity graphs. This

subsystem acts as a bridge, harmonizing the needs of both users and the AI system.

Figure 5: Data flow diagram of a user with the admin role, uploading the map area data of their tenant and adding the

location of an entity

The Area Mapping Subsystem takes the user's map input and translates it into visual representations

that users can interact with. This visualization aids users in understanding the layout and geography

of the mapped area.

Figure 6: Data flow diagram of a user viewing the area map of their desired tenant

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 17

The Area Mapping Subsystem extends its functionality to support the AI subsystem, contributing

crucial data and insights that enhance the AI's capabilities. To assist the AI module, the subsystem

generates navigable entity graphs. These graphs represent the connections and relationships

between different entities within the mapped area. This information is invaluable for the AI's

navigation and decision-making processes.

Figure 7: Data flow diagram of the AI module requesting the graph of the navigable entities belonging to a tenant

In order to comply with geospatial standards, the area maps will be drawn with external software

like JOSM or OSMInEdit. However item, exhibit, facility or establishment placements on map areas

will be managed in the CULTURATI admin application using the Area Mapping Subsystem. Users can

easily place items on the created maps, accurately positioning them within the defined areas. These

maps are also used to determine the carrying capacities of each area.

The CULTURATI application extends its navigation capabilities to indoor environments by

implementing Indoor Mapping and Routing features. This functionality is made possible by

integrating the standardized Simple Indoor Tagging schema, which has been developed to cater to

indoor mapping.

The Simple Indoor Tagging schema serves as a guideline for annotating indoor spaces with relevant

metadata, including details about rooms, corridors, points of interest, and other spatial entities

within enclosed structures such as museums or cultural venues. This schema ensures a consistent

approach to indoor mapping across diverse settings. Since indoor wayfinding is not as commonplace

as outdoor wayfinding, the CULTURATI application will be employing its own wayfinding algorithm

using these tags.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 18

3.3. Artificial intelligence Subsystem

An Artificial Intelligence Subsystem is a module within a software application that manages the AI

capabilities according to the specific task that will use AI. These capabilities may be generative (text

generation, image generation, audio generation, etc.) or non-generative (classification, forecasting,

computer vision, anomaly detection, etc.). The primary purpose of the AI Subsystem is to control the

interaction between AI models and requests and serve model outputs according to the task a given

request specifies.

Expanding upon this foundation, the AI Subsystem will take on an even more dynamic role within

the software application. Its multifaceted responsibilities will extend beyond conventional AI

capabilities to encompass experiential engagement and strategic guidance.

At its core, the AI Subsystem will serve as the orchestrator of gamification, infusing the visitor's

journey with an interactive and educational dimension. Leveraging its generative prowess, the

subsystem will collaborate with visitors to generate pertinent questions that align with their

interests and curiosities. This personalized query generation will not only stimulate the visitor's

intellectual engagement but also foster a deeper connection with the presented content. As the

visitor embarks on their quest for answers, the AI Subsystem will stand as their guide, assisting in the

navigation of the knowledge base and the site's diverse offerings.

The AI Subsystem plays a pivotal role in curating and enhancing accessibility to cultural heritage

knowledge. By implementing knowledge graphs, it organizes and presents information in a

structured manner, connecting various elements such as narratives, exhibits, and artworks. This

approach not only preserves cultural heritage but also makes it more accessible to visitors. By

visually mapping out relationships between different components, the subsystem simplifies complex

information, offering a user-friendly and engaging experience that fosters a deeper understanding

and appreciation of our cultural legacy.

Furthermore, the AI Subsystem's role will transcend the confines of individual curiosity, extending its

reach to enhance the overall management of visitor traffic. Drawing upon its capacity for

classification and forecasting, the subsystem will analyze visitor interests, preferences, and historical

patterns. Armed with this insight, it will collaborate harmoniously with both visitors and curators,

proposing optimal pathways tailored to individual preferences and occupancy information. This

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 19

dynamic traffic management will not only optimize the visitor experience but also alleviate

congestion and ensure a harmonious flow throughout the site.

While considering visitor interests is very important, foot traffic will also be taken into account for

path recommendations. Harnessing the power of real-time data, the AI Subsystem seamlessly

integrates sensor-generated information on visitor traffic. By analyzing metrics such as foot traffic

within designated areas over 1-2 hour intervals, the subsystem takes on a pivotal role in estimating

the number of people at any time of the day and balancing the crowd distribution to these areas.

This dynamic orchestration ensures an optimal visitor experience by preventing overcrowding and

minimizing exposure to high visitor traffic. In doing so, the subsystem creates an environment that

prioritizes visitor satisfaction while simultaneously enabling site managers to uphold a seamless,

secure, and organized experience. This amalgamation of data-driven insights and strategic

management underscores the AI Subsystem's contribution to fostering a harmonious and enjoyable

exploration of the site's rich cultural offerings.

In summary, the AI Subsystem's evolution from a mere controller of AI capabilities to a catalyst of

immersive engagement and strategic guidance underscores its pivotal role in shaping the visitor

experience. Through gamification, personalized guidance, and intelligent traffic management, the

subsystem will emerge as a vital companion, empowering visitors to embark on enlightening

journeys and curators to orchestrate seamless and enriching explorations of the cultural tapestry

held within the site.

The AI Subsystem employs advanced models, including Rebel and IBM Knowgl, to extract intricate

relationships from unstructured data sources. Through a sophisticated integration framework, the

subsystem orchestrates a seamless dialogue between user requests and model-generated outputs.

This orchestration is facilitated by a Flask service, complemented by the asynchronous task

management capabilities of Celery. This synergy ensures efficient and real-time interactions,

allowing users to effortlessly navigate the knowledge base and receive timely, relevant responses.

As the knowledge base matures and solidifies, the AI Subsystem leverages this stability to enhance

its functionalities incrementally. In particular, the subsystem's capacity for question generation and

gamification evolves in tandem with the growing robustness of the knowledge base. This synergy is

pivotal in harnessing the potential of Language Models (LLMs) responsible for gamification. By

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 20

exposing these LLMs to factual knowledge derived from the evolving knowledge base, their

performance can be elevated, enabling the generation of more insightful and engaging queries. This

virtuous cycle reinforces the system's ability to captivate users through gamified interactions,

fostering a deeper integration of educational and entertaining elements into the visitor experience.

3.4. IoT Subsystem

The CULTURATI system extensively uses the Internet of Things (IoT) to optimize the management of

crowds in venue-based and site-based cultural and creative industries (CCIs). To achieve this, the

system employs various tracking technologies, such as bidirectional sensors (people counter

sensors), radio frequency, RFID tags, Wi-Fi, Bluetooth, indoor positioning systems (IPS), local

positioning systems (LPS), cell-tracking, camera, and GPS. These technologies allow the system to

monitor the movement of people within the venues accurately.

Figure 8: The general architecture of the IoT subsystem.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 21

The IoT Subsystem plays a pivotal role in processing and preserving raw sensor data, which

subsequently becomes accessible to the AI module for route-finding purposes. The IoT Subsystem

serves as the initial processing hub for raw sensor data, ensuring its transformation into meaningful

and usable information.

Raw sensor data is collected from various IoT devices deployed across the environment. The IoT

Subsystem processes the collected data, performing necessary calculations, filtering, and data

conditioning to extract valuable insights. This processed data may include real-time environmental

conditions, object movement patterns, and other relevant information.

The processed data with the raw data are then saved within the IoT Subsystem's storage

infrastructure. This organized repository retains historical and current sensor data, forming a

valuable resource for the AI subsystem.

Figure 9: Data flow diagram of collection of crowd data.

3.5. Educational Subsystem (Gamification Module)

The Gamification Module is a crucial component designed to enhance the interactive and

educational experience of visitors in the designated area. Its primary function is to generate quiz

questions related to the items and exhibits, providing an engaging and enjoyable way for visitors to

interact meaningfully with the content. By collaborating with the AI Subsystem, responsible for

question generation, the module ensures that the quiz questions are relevant, immersive, and

tailored specifically to the items and exhibits within the space. This personalized approach aims to

deepen visitors' understanding and appreciation of the cultural and educational content present in

the area.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 22

Figure 10: Data flow diagram of question generation

The Gamification Module's core functionality includes dynamic quiz question generation. It interacts

with the AI Subsystem, which utilizes advanced machine learning algorithms to dynamically create

quiz questions based on the available items and exhibits in the area. The AI Subsystem ensures that

the questions are diverse, contextually relevant, and aligned with the educational goals of the

content. Once generated, the quiz questions undergo a review process by curators to ensure

accuracy, quality, and relevance. This ensures that the questions provide a meaningful and

educational experience for the visitors.

The AI Subsystem employs transformer models to facilitate question generation. Initially, these

transformers create a series of question-answer pairs by drawing context from an input text.

Subsequently, leveraging this array of pairs alongside the original text, the subsystem employs its

cognitive prowess to construct deceptive answers designed to challenge and engage the user. These

crafted distractors not only enrich the user's interaction by presenting a rigorous test but also

stimulate critical thinking and analytical skills, thus amplifying the overall learning experience in an

immersive and thought-provoking manner.

Our approach involves utilizing pre-trained models enhanced with Knowledge Graph designed for

question-answer pairs to generate both questions and corresponding answers. By leveraging the

capabilities of these specialized models, we ensure the creation of coherent and contextually

relevant questions, along with accurate answers that align with the given queries. Our strategy

employs a multi-task model that generates both questions and answers as a unified output. This

innovative approach ensures a cohesive and interconnected dialogue, where the generated

questions seamlessly correlate with their respective answers. By employing this integrated

framework, we create a more dynamic and engaging user experience, fostering a deeper

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 23

understanding and interaction with the content presented on the site. In our ‘’wrong answer’’

generation process, we utilize a comprehensive input that includes the question, answer, and

relevant text. Through this holistic approach, our system produces insightful deceptive answers

obtained from the models and KG as the output. By drawing from the entirety of provided

information, we ensure that the generated distractors are contextually relevant and intellectually

stimulating.

Integrating seamlessly with the user interface, the Gamification Module presents the approved quiz

questions to visitors in an intuitive and visually appealing manner. As visitors interact with the

questions, their responses are tracked and analyzed, allowing the system to assess the effectiveness

of the quiz questions and overall engagement level.

In summary, the Gamification Module plays a central role in creating an interactive and educational

environment for visitors. By leveraging the capabilities of the AI Subsystem, it generates

personalized quiz questions that enhance visitors' understanding and enjoyment of the cultural and

educational content within the designated area. The dynamic and immersive quiz-based interactions

provide a unique and engaging experience, fostering a deeper connection between visitors and the

exhibits or items on display.

3.6. System Architecture

The application employs the Spring MVC architecture with a client-server model, where a Spring

Boot application serves as the backend and a React application serves as the frontend for both the

mobile user interface and the administrator application.

On the other hand, the frontend of the application is developed using React, a JavaScript library for

building user interfaces. React is known for its component-based approach and virtual DOM

rendering, which enhances the application's performance and user experience. By employing React

for both mobile and administrator applications, the development team can reuse components and

ensure consistent functionality and user interfaces across platforms.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 24

Figure 11: Core Back-end Architecture

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 25

3.6.1. Back-end Architecture

The back-end will be developed using the Spring Boot framework. The back-end architecture will

include the following components:

Controllers: Controllers in Spring Boot handle incoming HTTP requests from both the mobile user

interface and administration application. The requests are received through controller end-points

where the controller executes the corresponding business logic.

Webhooks: In addition to its core functionality, the application offers webhooks as a means of

integrating with external modules, such as the AI subsystem. Webhooks are end-points exposed by

the application that allow external systems or modules to receive real-time notifications or callbacks

from the application. The application may make requests to an external module to perform certain

tasks or computations. After processing the requests, the external module can utilize the webhooks

provided by the application to notify or send the results back to the application.

Services: Services encapsulate the business logic of the application. They handle complex

operations, interact with data repositories, and perform necessary validations or calculations.

Services are responsible for implementing the application's rules and workflows.

Data Access Layer: The data access layer consists of repositories or DAOs (Data Access Objects) that

interact with the database or other data storage systems. They provide CRUD (Create, Read, Update,

Delete) operations and abstract the underlying data access logic.

3.6.1.1. Submodule Architecture

The architecture of the core back-end application utilizes submodules to achieve effective data

separation. By employing this modular approach, we are able to compartmentalize distinct

functional aspects of the application, thereby promoting organization, maintainability, and

scalability. To implement this submodule approach CULTURATI’s core back-end uses git submodules

and java packages.

Submodules implemented using git submodules are beneficial to encapsulation by facilitating the

organization and separation of different components. Each submodule retains its distinct version

history and can be developed independently, resulting in isolation that safeguards the internal

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 26

intricacies of the submodule's codebase within its dedicated repository. This isolation mitigates the

risk of interference from other sections of the codebase.

 Submodules also promote the separation of concerns, ensuring that each module focuses on a

specific functionality. Therefore, they can be developed, tested, and maintained individually. This

modular approach enhances codebase maintainability, as changes or updates to a specific module

can be managed within its own repository, minimizing the impact on other parts of the codebase.

Encapsulating code in submodules makes it easier to version and reuse specific functionalities across

projects. You can treat a submodule as a standalone component with a well-defined interface,

allowing for more efficient reusability and sharing of code.

The core back-end codebase has been structured to encompass several key submodules, each

serving a specific purpose. These submodules are designed to encapsulate discrete sets of

functionalities, ensuring a clear and coherent separation of concerns. Here's a brief overview of the

individual submodules:

Figure 12: General architecture of the submodules and packages of the Core Back-end Application

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 27

commons: This submodule serves as a shared foundation, housing common utilities, resources, and

components that are utilized across different parts of the application. It fosters reusability and

consistency throughout the codebase.

user: The user submodule is dedicated to managing user-related functionalities, encompassing

authentication, authorization, user profiles, and related operations. This focused approach

streamlines user management while maintaining a clear boundary with other modules.

wiki-integration: The wiki-integration submodule establishes content management for users with

the admin role. It facilitates creation, modification, and retrieval of content in the core application.

directions: The directions submodule tackles location-based services and route calculations. It

enables the application to provide accurate and efficient directions, enhancing the user experience

for geospatial interactions.

application: Lastly, the application submodule serves as the core engine that orchestrates the

integration of the aforementioned submodules. It brings together their functionalities and

orchestrates their interactions, ensuring a cohesive and harmonious overall application behavior.

By adopting this submodule-based architecture, we ensure not only a robust foundation for our

backend application but also a flexible framework that can accommodate future expansions and

enhancements.

3.6.1.2. Data Synchronization between different data sources

To address synchronization challenges, the system will employ an eventual consistency approach.

The system's replica nodes will originate from the duplicate entity representations in the content

management database and the main database. By adopting eventual consistency, the system aims

to ensure that all replicas eventually reach a consistent state, despite potential temporary

inconsistencies.

To achieve this, the system will implement periodic synchronization of created or updated nodes on

a daily basis. This synchronization process will reconcile any differences between the replica nodes,

ensuring they converge towards a consistent state over time. Additionally, the system will provide

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 28

users with the option to manually trigger synchronization if immediate consistency is required,

granting them control over the synchronization process.

By utilizing eventual consistency, the system strikes a balance between synchronization efficiency

and maintaining data integrity. It acknowledges that temporary inconsistencies may arise but

ensures that over time, all replica nodes will align and reach a consistent state.

3.6.1.3. Crosscutting concerns

Aspect-Oriented Programming will be used as a technique or approach used to address crosscutting

concerns in the application's architecture. AOP provides a way to encapsulate and separate

crosscutting concerns from the core business logic, improving modularity and maintainability.

3.6.1.4. Logging

The system will integrate with a logging framework, such as Logback or Log4j, to provide robust and

customizable logging capabilities. The logging configuration will be defined to capture appropriate

log levels, including debug, info, warning, and error. Logs will be generated for critical operations,

exceptional conditions, and important events. The logs will include relevant contextual information,

such as timestamps, log levels, source components, and descriptive messages. Additionally, a log

rotation strategy will be implemented to manage log files and prevent them from consuming

excessive disk space.

3.6.1.5. Security

Security is a vital concern to protect sensitive data and ensure authorized access to the application.

The application will employ Spring Security, a widely adopted security framework, to implement

authentication, authorization, and access control mechanisms. User authentication will be

implemented using standard techniques such as username/password-based authentication or token-

based authentication (e.g., JWT). Role-based access control will be enforced to restrict access to

specific resources or functionalities based on user roles. Security configurations, including secure

communication over HTTPS, session management, and protection against common security

vulnerabilities (e.g., cross-site scripting, cross-site request forgery), will be implemented to mitigate

potential security risks.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 29

3.6.1.6. Auditing

The application will incorporate auditing capabilities for the administration application to track and

log important activities, ensuring accountability and compliance. Audit logs will capture critical

events such as user actions, system configuration changes, and data modifications. The audit logs

will include relevant information such as user identity, timestamp, action performed, and affected

resources.

3.6.1.7. Transaction Management

The application will leverage Spring's transaction management capabilities, which provide

declarative transaction demarcation and coordination. Appropriate transaction boundaries will be

defined, allowing operations to be executed atomically. Transaction isolation levels and propagation

rules will be configured based on the specific requirements of each operation. Error handling and

rollback mechanisms will be implemented to handle exceptional conditions and ensure data

consistency in case of failures.

3.6.1.8. Caching

To improve application performance and reduce the load on data sources especially when

generating tour paths, caching will be implemented for frequently accessed data. The application

will integrate with caching frameworks such as Ehcache, Caffeine, or Redis. Caching strategies, such

as cache eviction policies and cache update strategies, will be defined based on the characteristics of

the data. Caching annotations will be used to mark methods or data sources that can be cached.

3.6.2. Front-end Architecture

The front-end of the application will be developed using React, a widely adopted JavaScript library

renowned for its ability to create dynamic and interactive user interfaces. Complementing React,

Next.js, a robust React framework, will be utilized to build a scalable and production-ready web

application.

3.6.2.1. Component-Based Architecture

The user interface will be structured by breaking it down into reusable components that encapsulate

specific functionality. This approach promotes code reusability, modularity, and easier maintenance.

Components will be composed to build complex UIs, facilitating flexibility and scalability.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 30

3.6.2.2. Modular CSS

The implementation of modular CSS serves as an extension of the component-based architecture,

presenting a systematic methodology for styling. Custom styling will be implemented in dedicated

CSS files, prioritizing improved maintainability, scalability, and modularity.

3.6.2.3. Externalized Configuration

The system will utilize externalized configurations to allow the system to be deployed using the

same codebase with different configurations resulting in system-wide changes to be made without

changing the codebase. Furthermore, it simplifies the process of altering visual aspects, such as

styling, within the system. This decoupling of configurations from the codebase streamlines the

deployment process and minimizes the risk of introducing errors.

3.6.2.4. Higher-Order Components (HOCs)

Higher-Order Components (HOCs) provide a powerful mechanism for encapsulating common

functionalities, reusing behaviors across components, extracting cross-cutting concerns, composing

multiple behaviors, and decoupling component logic from presentation. These capabilities enhance

code reusability, modularity, maintainability, and flexibility within frontend applications.

 HOCs enable the system to encapsulate and abstract common functionalities or behaviors,

which can then be applied to multiple components. By wrapping components with HOCs,

these behaviors can be reused throughout different parts of the application, eliminating the

need for redundant code.

 Furthermore, HOCs are valuable in extracting cross-cutting concerns, such as authentication,

data fetching, or state management. This approach helps keep the component code focused,

improving its readability and maintainability.

 The composability of HOCs is another advantage they offer. Multiple HOCs can be stacked

together, with each adding a distinct aspect to the component's behavior. This

compositional nature allows for the creation of complex components by combining smaller,

reusable HOCs. As a result, modularity and flexibility are promoted within the application's

architecture.

 One significant benefit of HOCs is their ability to facilitate the decoupling of concerns. They

achieve this by separating the logic of a component from its presentation. By abstracting

shared functionalities into HOCs, components can focus on rendering UI and handling user

interactions while relying on the HOCs to manage underlying behaviors.

3.6.2.5. State Management

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 31

Redux will be utilized for efficient state management in the front-end. It will provide a centralized

store to manage the application state, enabling a predictable state container. Actions and reducers

will be implemented to handle state changes, ensuring a consistent data flow and facilitating easier

debugging and testing.

3.6.2.6. API Communication

Asynchronous data fetching will be handled using Axios, a popular JavaScript library for making HTTP

requests. Axios seamlessly integrates with the project, providing a simple and efficient way to

retrieve and update data from the back-end APIs. It will enable smooth communication and data

synchronization between the front-end and back-end.

3.6.2.7. Routing

To handle navigation and different views within the front-end, the project will incorporate a client-

side routing pattern. Client-side routing ensures that the user interface dynamically updates based

on the current URL, allowing for smooth navigation between different sections of the application.

React Router will be used as the routing library to implement the client-side routing pattern. It

provides a declarative way to define routes and associate them with specific components or views.

React Router enables the application to maintain a single-page experience, where navigation occurs

within the browser without requiring a full page refresh.

By adopting the client-side routing pattern, the frontend will deliver a responsive and interactive

user experience, enabling users to seamlessly navigate between various sections or views of the

application while preserving the state and context of the current page.

3.6.2.8. Styling

Styling will be implemented using Tailwind CSS, a utility-first CSS framework. Tailwind CSS provides a

wide range of utility classes that facilitate rapid UI development and consistent styling. It simplifies

the process of creating visually appealing and responsive user interfaces, ensuring a consistent and

cohesive design across the application.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 32

Figure 13: CULTURATI Front-end Component

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 33

3.6.3. Authentication and Authorization

The system will utilize JWT for authentication and authorization purposes. JWT tokens are granted

after the system authorizes the user and can be sent with subsequent requests to access protected

resources. The system can then verify the authenticity of the token and extract user information

from it.

Since tokens contain necessary information to prove authenticity and authorization, the backend of

the system is stateless, meaning it does not need to maintain the session information of the user.

The statelessness of the system allows for horizontal scalability, where multiple instances of the

system can handle requests without needing to share session data. Each instance can independently

verify the JWTs, making it easier to distribute the application across multiple servers or use

serverless architectures.

Additionally, JWTs can include expiration times, limiting their validity. These security features help

protect against token forgery, tampering, and unauthorized access improving the system’s security.

3.7. Communication Between Software Components

3.7.1. Core Back-end and Front-end

The system architecture of the application involves seamless communication between the back-end

and front-end through RESTful APIs. The front-end, developed using React and Next.js, interacts with

the back-end by sending HTTP requests to the backend's API endpoints. These requests are

responsible for tasks such as retrieving data, submitting forms, or performing various actions.

Upon receiving the HTTP requests, the back-end processes the incoming data and executes the

required operations. This involves handling business logic, data manipulation, and any necessary

interactions with databases or external services. The back-end then generates responses based on

the processing results, which include requested data or appropriate status codes.

Through this communication mechanism, data flow between the front-end and back-end is

facilitated, allowing for a dynamic and interactive user experience. The front-end can efficiently

retrieve and update information, ensuring that the user interface remains up-to-date and responsive

to user interactions. The RESTful API approach promotes a well-organized and standardized

communication process, enabling different parts of the application to work harmoniously together.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 34

3.7.2. Internal Communication of the Core Back-end

The core back-end of the CULTURATI application integrates git submodules and Java packages to

establish encapsulation. This approach sets an organized and modular architecture.

Git submodules serve as the initial layer of this architectural strategy. They enable separating various

components or features into discrete, standalone units. Each submodule represents a distinct and

self-contained module of functionality.

Complementing the use of git submodules, Java packages provide a hierarchical structuring

mechanism. These packages act as containers for organizing related classes and interfaces within

each submodule. This internal structuring ensures that the encapsulation achieved at the submodule

level is further upheld within the individual components. By assigning classes and interfaces to

appropriate packages, a clear and intuitive structure emerges, promoting code readability and

navigation.

The coordination between git submodules and Java packages is underscored by the establishment of

interfaces. These interfaces act as communication gateways, defining the contracts and interactions

between different submodules and their encapsulated functionalities. By adhering to these interface

specifications, submodules can seamlessly collaborate without delving into one another's

implementation details.

3.7.3. Core Back-end and the Wiki instance

The wiki instance employs a GraphQl API where it provides CRUD (Create, Read, Update, Delete)

operations. These operations are made accessible through end-points, enabling the core back-end to

manipulate the wiki data. The communication is established via GraphQl queries, initiated from the

core back-end and directed towards the wiki instance.

When a user intends to engage with the wiki instance through the core application, first, the core

back-end authorizes through an authorization request. The necessary credentials are created

through the wiki instance’s UI and are preconfigured in the configuration files specific to the core

backend user’s tenant. Using these credentials, the core back-end establishes authorization with the

wiki and then interprets and sends the users request to the wiki instance.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 35

Figure 14: Diagram showing the authorization flow for requests made to the wiki instance

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 36

The core back-end facilitates CRUD operations of pages in the wiki. However, it is important to note

that while the core back-end governs the Create, Read, Update, and Delete processes for pages, it

does not directly engage in the creation or modification of the content within these pages.

When a user initiates the creation or modification of page content, the core back-end redirects the

user to the user interface of the wiki instance. This redirection ensures that the user interfaces with

the wiki instance's dedicated UI environment, where content creation and updates are managed.

This architectural delineation streamlines the overall process, with the core back-end responsible for

the synchronization and data integrity of the entities in the system, while the task of generating and

updating content is delegated to the wiki instance's user interface.

3.7.4. Core Back-end and the AI Module

The interaction between the Core Backend and AI Module is facilitated via a REST API, offering a

comprehensive range of operations. These operations are accessible through designated end-points,

enabling both the Core Back-end and AI Module to exchange and retrieve data.

Whenever one module requires data from the other, the process begins with an authorization

request. The essential credentials are preconfigured within the configuration files of their respective

applications. These credentials serve as the means by which the modules authenticate with each

other and subsequently send requests to fulfill their specific requirements.

3.8. Version Control Practices

All core applications projects and modules leverage the capabilities of Github repositories. This

adoption of Github repositories provides a robust and centralized platform for overseeing the

evolution and management of the application's source code. Github's version control mechanism

operates through the Git system. Git records every alteration made to the source code, creating a

chronological log of commits that can be revisited, compared, and analyzed.

The feature branching approach is employed for both the back-end and front-end repositories.

Given the core application consists of distinct submodules, the component-based workflow is also

utilized.

In the context of version control and collaboration in software development, the "feature branching

approach" refers to the practice of creating separate branches for each new feature or bug fix. This

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 37

segregation enables developers to work on specific changes independently without affecting the

main codebase. Once a feature is complete, it can be merged back into the main branch after review

and testing.

A "component-based workflow" revolves around managing different components or services of an

application as separate entities. Each component or service has its own repository and development

process, allowing teams to work on specific functionalities in isolation. This approach is particularly

effective in complex projects where different components interact and need to be developed,

tested, and deployed independently.

4. NIMBEO Architecture

NIMBEO's goal in the CULTURATI project is to design and create a Wiki. This Wiki will serve as a

centralized repository, storing crucial information about museums and places, including exhibition

details, multimedia content, and accessibility information. Wiki's user-friendly interface,

customization options, content management flexibility, and version control ensure seamless content

updates and data integrity. Additionally, its collaborative editing, security measures, and integrations

empower Nimbeo to deliver a comprehensive and engaging cultural exploration platform, enriching

visitors' experiences and fostering knowledge-sharing within the community.

4.1. Key aspects of the Wiki

The CULTURATI’s Wiki is a user-friendly interface designed to enable efficient and collaborative

knowledge-sharing within organizations. With a focus on simplicity and accessibility, The Wiki offers

a feature-rich platform for creating, organizing, and maintaining internal documentation and

knowledge bases.

At the core of the Wiki is its intuitive and modern user interface, which allows users to effortlessly

create and edit pages, encouraging active contributions from team members. Real-time editing

capabilities facilitate seamless collaboration, making it an ideal choice for distributed teams and

organizations.

Key features of the Wiki include a flexible markdown editor, version control for pages, granular

access controls, and a powerful search functionality. These features ensure that content remains up-

to-date and accurate while allowing administrators to manage permissions effectively.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 38

The flexible markdown editor further enhances collaboration by enabling users to format easily and

structure content, adding headings, lists, images, and links with simplicity and efficiency. This

intuitive editor reduces barriers to entry for non-technical contributors, encouraging a diverse range

of team members to participate in content creation and updates actively.

Moreover, the Wiki's granular access controls empower administrators with the ability to define

specific user roles and permissions, tailoring access to different sections and functionalities based on

individual responsibilities and organizational hierarchies. This fine-grained control safeguards

sensitive information while allowing the right people to access the appropriate resources.

Administrators can effortlessly manage permissions, granting edit access to content creators, read-

only access to stakeholders, and complete access to designated leaders or supervisors.

Security is a top priority in the Wiki’s workflow, and the code implements robust authentication and

authorization mechanisms to protect sensitive information. Additionally, data backups and

restoration features safeguard against accidental data loss, providing peace of mind to

administrators.

Finally, the Wiki's powerful search functionality ensures that users can swiftly locate the information

they need amid vast repositories of content. Advanced search filters and keyword highlighting

streamline the process of finding relevant articles, documents, and data, saving valuable time.

4.1.1. CULTURATI wiki side overview

The Wiki is built on a modern and flexible architecture that facilitates efficient knowledge-sharing

and documentation management. At its core, the CULTURATI Wiki follows a client-server

architecture, enabling smooth communication between the front-end and back-end components.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 39

Figure 15: Wiki’s General Process

Front-end Architecture:

The front-end of the Wiki is developed using modern web technologies, primarily built on JavaScript,

HTML, and CSS. It embraces a component-based architecture, dividing the user interface into

reusable and modular components. This approach promotes code maintainability and extensibility,

making it easier for developers to add new features or customize existing ones.

By adopting a component-based architecture for the front-end, the Wiki gains a considerable

advantage in terms of scalability and development efficiency. Each component is designed to be self-

contained, encapsulating its unique functionality and appearance. This modularity allows developers

to work on different sections of the application independently, fostering parallel development and

reducing the risk of introducing unintended bugs. Moreover, the re-usability of components

accelerates the development process as developers can leverage existing components to create new

features, reducing redundant code and saving valuable time.

In addition to its modern web technologies, the Wiki prioritizes responsive design principles,

ensuring that the user interface adapts seamlessly to various screen sizes and devices. This

responsiveness is crucial in today's mobile-first world, where users access information from

smartphones, tablets, laptops, and desktops. By providing a consistent and optimized experience

across different platforms, the Wiki enhances user satisfaction and accessibility, enabling

contributors and readers to access content from virtually anywhere.

Server-side Architecture:

On the server-side, the Wiki employs Node.js, a fast and scalable JavaScript runtime, to handle back-

end operations. Node.js's event-driven, non-blocking I/O model ensures high performance and

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 40

responsiveness, making the CULTURATI’s Wiki suitable for concurrent user interactions.

One of the key advantages of Node.js is its event-driven architecture, which allows the server to

handle multiple simultaneous operations without being blocked by any single request. This non-

blocking I/O model ensures that the server can efficiently manage concurrent user interactions,

making the Wiki highly responsive even during periods of high traffic and user activity. As a result,

users can seamlessly navigate through the platform, edit content, and perform searches without

experiencing delays or slowdowns, enhancing the overall user experience.

Additionally, Node.js is renowned for its scalability, making it well-suited for handling the demands

of a rapidly growing user base or a large enterprise environment. With its ability to handle a

significant number of concurrent connections, the Wiki can effortlessly accommodate an expanding

community of contributors and readers without compromising on performance.

Data Storage and Database:

The CULTURATI’s Wiki stores its data in a lightweight and efficient database using PostgreSQL. The

database is responsible for storing page content, user information, access control settings, and other

relevant data.

The decision to utilize PostgreSQL as the database for the CULTURATI’s Wiki brings forth a host of

advantages, making it an ideal choice for storing and managing crucial data. PostgreSQL is an open-

source, object-relational database management system that has earned a reputation for its

robustness, stability, and performance. Its mature and well-established architecture ensures data

integrity and reliability, making it a dependable foundation for the Wiki's content and user

information.

One of PostgreSQL's standout features is its support for complex data types and advanced querying

capabilities. This flexibility allows the wiki to store a diverse range of content efficiently, including

rich media, structured documents, and user-generated data. Moreover, the database's ability to

handle large volumes of data and execute complex queries in a performant manner guarantees that

the Wiki can manage a vast repository of articles, revisions, and user profiles without compromising

on response times.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 41

APIs and Communication:

The front-end and back-end of CULTURATI’s Wiki communicate via RESTful APIs. These APIs enable

seamless data exchange between the client and server, allowing real-time updates and interactions.

RESTful APIs also facilitate integration with other applications and services.

REST (Representational State Transfer) is an architectural style that relies on standard HTTP

methods, making it lightweight, simple, and widely supported across various platforms and

programming languages. By adhering to RESTful principles, the wWiki's APIs ensure a standardized

and intuitive interface for data exchange, facilitating smooth interactions between the client-side

and server-side components.

Moreover, RESTful APIs promote modularity and decoupling between the front-end and back-end of

the wiki. The well-defined API endpoints allow each component to evolve independently without

affecting the other. This separation of concerns enables the front-end and back-end teams to work

in parallel, streamlining the development process and reducing potential conflicts.

Authentication and Authorization:

Security is a fundamental aspect of the CULTURATI’s Wiki architecture. The library implements

robust authentication and authorization mechanisms to control user access and ensure data privacy.

Administrators can define user roles with specific permissions, ensuring that only authorized users

can create, edit, or delete content.

One of the cornerstones of the platform's security is the use of encryption for sensitive data both in

transit and at rest. When data is transmitted between the front-end and back-end or exchanged

with external services, it is encrypted using industry-standard protocols such as TLS (Transport Layer

Security). Additionally, data stored in the database, including user credentials and other confidential

information, is encrypted at rest, ensuring that even in the event of unauthorized access to the

underlying storage, the data remains protected.

To safeguard against common security vulnerabilities, the CULTURATI’s Wiki employs rigorous input

validation and sanitation mechanisms. This proactive approach helps prevent malicious input, such

as SQL injection or cross-site scripting (XSS) attacks, from compromising the platform's integrity or

exposing sensitive information. By validating and sanitizing user inputs at every stage of data

processing, the wiki significantly reduces the risk of data breaches and unauthorized access.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 42

Figure 16: Wiki Authentication Process

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 43

4.1.2. Data Architecture

The data architecture of CULTURATI’s Wiki plays a crucial role in efficiently managing and organizing

the content and user-related information within the platform. The Wiki relies on a database to store

various types of data, such as page content, user details, access control settings, and system

configurations. The choice of database can be tailored to meet specific needs, but popular options

include PostgreSQL.

4.1.2.1. Page Content:

The core element of the Wiki is the content of individual pages. Each page may contain rich text,

images, links, and other multimedia elements. The wiki stores this page content in the database,

ensuring that it remains persistent and accessible for users across sessions.

The rendering module within the Wiki enhances content processing capabilities by introducing

additional features to the platform. As an integral part of the rendering pipeline, this module plays a

vital role in transforming raw content into its final HTML form.

Figure 17: Wiki Extension Rendering Module Flow

In the rendering pipeline, the rendering module takes on the responsibility of parsing and processing

the original content provided by users or administrators. It employs a series of sophisticated

algorithms and transformations to convert the raw input into a visually appealing and well-

structured HTML representation. By integrating the rendering module into the Wiki architecture, the

platform gains the ability to handle diverse types of content efficiently. This Includes supporting

various media formats, embedding rich media elements, handling code syntax highlighting, and

managing the organization of text, images, and links. The rendering pipeline's meticulous parsing

and transformation process ensure that the content presented to users is consistent, accessible, and

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 44

easily digestible. It optimizes the user experience by delivering visually coherent and interactive

pages, promoting effective knowledge-sharing and communication within the community.

4.1.2.2. User Information:

User management is essential for any collaborative platform, and the CULTURATI’s Wiki is no

exception. The data architecture stores user information, including usernames, email addresses, and

hashed passwords for authentication purposes. User roles and permissions are also managed,

allowing administrators to define access levels for different users.

As users are a central aspect of the platform, the data architecture stores essential user information

in a secure and organized manner. This includes user attributes such as usernames, email addresses,

and hashed passwords. Hashing passwords before storage ensures that sensitive information

remains protected even in the event of a data breach.

Beyond basic user information, the wiki's data architecture incorporates features for managing user

roles and permissions. Administrators hold the authority to assign specific roles to users, granting

them distinct levels of access and capabilities within the platform. User roles typically include

categories like administrators, editors, contributors, and readers, each with varying degrees of

privileges. For instance, administrators possess complete control over the platform's settings, user

management, and content moderation, while editors can create, modify, and publish content.

4.1.2.3. Access Control Settings:

Access control settings govern the permissions granted to users, determining their ability to create,

edit, or delete content. These settings are associated with user roles and are stored in the database

to enforce proper data privacy and security measures.

4.1.2.4. Version Control:

The Wiki often implements version control for pages, allowing users to track changes made to

content over time. This version history is stored in the database, enabling administrators to revert to

previous versions if necessary and ensuring data integrity.

4.1.2.5. Configuration Settings:

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 45

The data architecture stores system configuration settings, which allow administrators to customize

various aspects of the Wiki. This includes options for enabling or disabling features, setting up

integrations with other systems, and configuring the appearance of the user interface.

One of the key functions of the system configuration settings is to enable or disable specific features

of the Wiki. Administrators can toggle various functionalities on or off, depending on the

organization's preferences or the specific use case. For instance, they can activate real-time

collaborative editing, content versioning, or user commenting based on the collaborative workflow

that best suits their team and community. The ability to enable or disable features provides a level

of flexibility that ensures the Wiki remains adaptable to different contexts and user preferences.

4.1.2.6. Metadata and Search Indexing:

To support efficient search functionality, the CULTURATI’s Wiki may employ metadata and search

indexing techniques. Metadata tags associated with pages are stored in the database, enabling

faster and more accurate search results for users.

Metadata plays a crucial role in enriching the content of pages with additional information and

context. Each page is associated with relevant metadata tags, which describe its content, category,

author, creation date, and other pertinent details. These metadata tags are stored in the database

alongside the page content, creating a comprehensive index that facilitates swift and targeted

searches.

To further optimize search performance, the Wiki employs search indexing techniques. Search

indexing involves creating a separate, optimized data structure that maps key terms and metadata

to the corresponding pages in the database. This indexing process pre-computes the results of

potential search queries, improving search response times significantly. When a user enters a search

query, the search engine consults the search index rather than scanning the entire content of each

page, leading to faster retrieval of matching pages.

4.1.3. Integration and API's

Wiki offers several integration options through its API (Application Programming Interface), which

allows external applications to interact with the Wiki pro-grammatically. The API follows RESTful

principles, providing standardized end-points for data exchange between the front-end and back-

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 46

end components of the Wiki. This RESTful API architecture makes it easier for developers to connect

the Wiki with other web services and applications.

With the Wiki API, developers can perform a variety of tasks, such as creating, updating, and

deleting pages, managing user accounts and permissions, and retrieving content or metadata from

the wiki. This API enables seamless integration of the wiki into custom applications or third-party

tools, extending the platform's capabilities beyond traditional wiki functionalities.

Additionally, the Wiki supports various authentication and authorization mechanisms to ensure

secure API access. Administrators can configure access controls and user permissions, enabling fine-

grained control over API operations. This robust security infrastructure protects sensitive data and

ensures that only authorized applications or users can interact with the Wiki through the API.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 47

Conclusion

In conclusion, the presented System Architecture Design and Specification Report outlines the

creation of an innovative application that seamlessly merges Java Spring Boot, React.JS, and AI

algorithms to craft a unique visitor experience with the following main aspects;

Innovative Integration for Personalized Experiences

By harmonizing the technologies stated above, our proposed system optimizes movement within

indoor and outdoor spaces, offering guided tours and comprehensive information through a

connected Wiki.JS library. Content creators also play a role in enriching engagement through tailored

content.

Agile Development with Micro-Services

The adoption of a micro-services architecture ensures adaptability and scalability, enabling

independent evolution and deployment of distinct components. Java Spring Boot forms a robust

backend foundation, capable of managing diverse functionalities, including user administration, AI

algorithms, and database interactions. Meanwhile, the React.JS-powered frontend guarantees a

modern, responsive, and reusable user interface.

AI-Powered Optimization and Personalization

Our pioneering integration of AI algorithms enables real-time data analysis and enhances visitor

flows, offering personalized routes based on AI-driven insights. This feature-driven approach

elevates the visitor experience by minimizing congestion and offering tailored experiences.

Rich Information Access through Wiki Integration

The seamless connection to a Wiki.JS library serves as a knowledge hub, offering visitors historical

insights, exhibit details, and the ability to engage with the community. A well-defined administration

role ensures the accuracy of site information and encourages user interaction.

Collaborative Content Creation: Fostering Engagement and Diversity

Expanding on the content creation platform, it's important to emphasize its pivotal role in cultivating

collaboration among content creators. This platform will not only enrich the system with diverse and

dynamic content but also acts as a catalyst for building a vibrant community of contributors who are

deeply invested in the success of the system.

Deliverable 2.2 System Architecture Design and Specification Report

HORIZON EUROPE RIA PROJECT - CULTURATI Grant Agreement No: 101094428
 48

Security, Compliance, and Adaptability

With a focus on security and data privacy, robust authentication, authorization mechanisms, and

data encryption protect sensitive user information and ensure compliance with data protection

regulations. The system's adaptability extends to different environments, making it suitable for

museums, galleries, and historical sites.

Continual Improvement and Integration

While partnerships and collaborations could enhance the system's value, our commitment to

continuous improvement ensures its relevance over time. Leveraging RESTful APIs, the system

enables seamless communication and integration between modules, promoting real-time updates

and data consistency.

Setting a New Standard

In essence, our system architecture design not only promises an exceptional visitor experience

through the convergence of cutting-edge technologies but also establishes a solid foundation for

future expansion and innovation. With user-centric design, security measures, and a commitment to

excellence, our proposed system redefines the integration of technology, visitor engagement, and

operational efficiency.

