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State of art approaches, insights, and challenges for digital mapping 
of electrical conductivity as a dynamic soil property 

Fuat KAYA a, b, c, a,* 

a Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Isparta University of Applied Sciences, 
32260 Isparta, Çünür, Türkiye 

b Department of Agronomy, Iowa State University, Ames, IA 50011, USA 
c Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Çukurova University, Adana, Türkiye 

 Abstract 
 
 
 
*Corresponding Author 

Soil electrical conductivity (EC) as a measure of soil salt content is a good 
indicator of nutrient and water availability or excessiveness in soils, which in 
return affect the productivity of soils. Therefore, mapping the spatial 
distribution of EC under intense agricultural management is important for 
managing soil fertility (e.g., fertilization and soil salinity remediation). However, 
mapping soil EC with high accuracy and spatial resolution remains to be 
challenge among digital soil mappers due to being a highly dynamic soil 
property. In this study, random forest (RF) was applied to map soil EC in an 
agricultural plain around the lake Manyas in the northwestern Türkiye. Fifty soil 
samples and a unique set of environmental predictors (aka covariates) were 
used to build a predictive soil EC model. The covariates were produced from 
Sentinel-2 optical satellite images-based vegetation and salinity indices as well 
as produced from Sentinel-1 with different polarizations (i.e., VV and VH), and 
terrain attributes representing the topography at varying scales were produced. 
Twelve environmental variables were selected to be relevant to predicting soil 
EC after using a correlation-based feature selection procedure. Resulting model 
performance was evaluated by root-mean-square-error (RMSE) of 10-fold 
cross-validation (CV). RF predicted soil EC with an RMSE of 0.07 dS m-1. Per each 
soil prediction in the final soil EC map, an uncertainty map was created using a 
sensitivity-based approach. The uncertainty map revealed the areas that were 
more difficult to accurately predict. Present study successfully mapped soil EC 
with acceptable error and can provide useful insights for managing soil fertility. 
In addition, an uncertainty map of soil EC can facilitate future soil sampling 
campaigns. For nearly a quarter of a century, while satellite-based remote 
sensing data has become the first choice for generating and updating soil survey 
information, in the near future, artificial intelligence techniques (e.g., ML) will 
be able to accompany soil surveyors in drawing map boundaries, especially in 
updating soil salinity phases. 

Fuat Kaya  

 fuatkaya@isparta.edu.tr 

 
 

 Keywords: Digital soil mapping, random forest, soil electrical conductivity, 
dynamic soil property, uncertainty. 

 © 2022 Federation of Eurasian Soil Science Societies. All rights reserved 

Introduction 
Spatial modeling of soil dynamic properties in arable lands is essential for agricultural management and 
decision-making (Ning et al., 2022). However, digital maps created for dynamic soil properties with the 
sufficient accuracy and spatial resolution is particularly rare for the areas where there is intensive agriculture 
(Baltensweiler et al., 2021). On the other hand, rapid increase in the environmental datasets that could 
represent soil formation factors (Burke et al., 2021) has made it easier to map soil dynamic properties using 
digital soil mapping (DSM) framework (Flynn et al., 2022). DSM refers to the creation of soil maps based on 
the relationships between environmental datasets (aka covariates) and mesaured soil data using statistical 
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learning algorithms (e.g., machine learning (ML)) (McBratney et al., 2003). In recent years, machine learning 
(ML) approach has been rapidly adopted in the prediction of soil properties (Hengl and MacMillan, 2019). 
Despite the succesful use examples of ML algorithms in mapping soil dynamic properties, large variations of 
soil EC and its highly dynamic nature at the field scale makes it difficult to predict soil EC accurately. This is 
typically due to its high dependence on agricultural activities as well as soil formation factors (Jenny, 1941). 
Current approaches to capture this variation have witnessed field-based studies specific to many different ML 
algorithms (Tomaz et al., 2020; Hateffard et al., 2022). Since EC is seen as a surrogate of soil salinity in the 
literature, studies are focused on predicting areas where salinity threats may develop. (Hopmans et al., 2021). 
This study aimed to digitally map the spatial distribution of soil EC using RF ML algorithm, using the 
environmental covariates satellite imagery products and digital terrain attributes derived from a digital 
elevation model (DEM) with varying analyis scales. An associated uncertainty map was also created to 
improve credibility of resultant soil EC map.  

Material and Methods 
Study area, sampling, and analyses 
The study field was located around the lake Manyas and covered an undulating area of 59 928 ha (N35 Zone 
UTM, 570000-595000 East, 4440000-4460000 North). The climatic conditions are characterized by an 
average annual temperature of 15°C and annual precipitation of about 700 mm (TSMS, 2022). The current 
area is rainfed marginal lands in the north of the study area in Vertisols, and essential and marginal irrigated 
complex agricultural areas in the south and west, according to field surveys. Fifty soil samples according to 
the stratified random sampling method at a depth of 30 cm were taken from the research area between June 
and August of 2019. The soil samples were air-dried at a room temperature of 24°C without a direct exposure 
to sunlight, ground, and then sieved with a 2 mm sieve. The processed samples were mixed with water to 
make a soil solution (the ratio of soil to water is 1:5) according to FAO (2021). After the solution was shaken 
for 1 hour (180 osc./min), EC (1:5 w/v, dS m-1) of soil samples was measured by a conductivity meter (Orion 
Star A112; Thermo Fisher Scientific). Duplicate analysis was performed on randomly selected 20 % of all 
samples in a test group. Relative Percent Difference (RPD) was calculated to determine whether the precision 
of duplicate analyzes was within specification. In many cases, RPDs of replicate pairs were less than 5%. 
Average RPD for the replicates was 5.66%, which was below the standard rule of 20% determined by FAO 
(2021). 
Environmental covariates  
In this study, nineteen environmental variables was used to model soil EC. The variables were from the 

-2A satellites (ESA, 2015
Sentinel-1 Synthetic Aperture Radar (SAR), and digital terrain attributes (DTAs) created by using the digital 
elevation model (DEM) from Shuttle Radar Topography Mission (SRTM). DEM and satellite imagery products 
were downloaded using google earth engine (GEE). These imagery products were useful to represent soil 
formation factors that could be influential in the spatial distribution of soil EC in our study area (Jenny, 1941). 
Sentinel-2A imagery represented organisms through providing information about the conditions of 
vegetation. Sentinel-1 SAR imagery in both VV and VH polarizations was obtained as the average of the 
relevant month of the year of the sampling date within the boundaries of the study area to indirectly represent 
climate through providing information about soil moisture (ESA, 2012). Soil EC is especially known to be 
affected by soil moisture (Taghadosi et al., 2019).  
Varying analysis scales (i.e., 130 m to 1010 m) were used to calculate the DTAs based on the pixel values of 
DEMs using the r.param.scale function in GRASS GIS 7.6.1 (Geographic Resources Analysis Support System, 
available online: grass.osgeo.org, accessed on 3 July 2022). As land-surface derivatives are dependent on the 
scale for calculation (Roecker and Thompson, 2010), different analysis scales may result in different outcomes. 
The use of DTAs with varying analysis scales as potential environmental predictors is useful because different 
analysis scales may be more appropriate for representing various phenomena (Miller et al., 2015) (Table 1). 
Since all covariates were obtained from different sources and have the different spatial resolutions, all 
covariates were aligned to the same grid cell resolution (10 m) and extent before constructing the data matrix. 
Complete list of environmental covaraites used in this study can be found in Table 1. 
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Table 1. The specifications of used covariates derived by DEM and remote sensing imageries in this study. 
Environmental covariates 
Digital Terrain Attributes Produced via program 
Elevation (m) 

SAGA 8.4.0 (Conrad et al., 2015) 
Slope (%) 
Aspect (°) 
Topographic wetness index 
Longitudinal Curvature 

GRASS GIS 7.8.7 (GRASS Development Team, 2022) 
Cross-sectional curvature 
Remote Sensing (RS) (Sentinel-2A) Optical Based (Accessed to three satellite image close to the sampling date in 2019) 
Vegetation-soil  
based indices 

Equations (Brown et al., 2017; 
Mponela et al., 2020) 

Salinity indices Equations (Avdan et al., 2022) 

GRVI  [1] SI 1  [6] 

SatInd   [2] SI 2  [7] 

NDVI  [3] SI 3  [8] 

CI  [4] SI 4  [9] 

GNDVI  [5] SI 5  [10] 

SI 6  [11] 

Remote Sensing (RS) (Sentinel-1 SAR) synthetic aperture RADAR Based  
VV-Vertical transmit, Vertical receive polarisation 
VH- Vertical transmit, Horizontal receive polarisation 
Abbreviations: GRVI: Green-Red vegetation index, SatInd: Saturation index, NDVI: Normalized difference vegetation index, CI: Coloration Index, GDVI: 
Green Normalized Difference Vegetation Index, SI: Salinity Index. With GRASS GIS, magnitude of maximum gradient was taken as the calculation basis 
for slope, aspect, cross-sectional curvature. 

A trial-error based feature selection (FS) process was carried out to overcome the multi-collinearity and curse 
of dimensionality issues (Ferhatoglu and Miller, 2022). Correlated covariates were removed by using 

covariates determined was 12 variables.  
Modelling and creation of digital maps 
Overall workflow of this study is shown in Figure 1. RF-based regression analysis was used to model and map 
the spatial distribution of soil EC. The RF algorithm is known to be advantegous because input data to be used 
in RF algorithm does not make assumption about the normality of the input data (Velázquez et al., 2022). Thus, 
the original data was directly used in the modeling. In addition, RF algorihtm has been succesfully applied in 
the prediction of dynamic soil properties (Kaya and Basayigit, 2022). 
Using the randomForest (Liaw and Wiener, 2002) function in the R Core Environment (R version 3.6.1) (R Core 
Team 2022) and RStudio IDE (RStudio 2022), the EC of the surface soil in the study area was estimated using 
a laboratory soil analysis set and environmental covariates. Multiple models were created by the process of 
10-fold CV. The average outcomes of these models were used to create the final soil EC map
base function in randomForest function. As error metrics in creation of decision trees by RF algorithm, 
%IncMSE and IncNodePurity metrics were used. %IncMSE was calculated for each tree with and without the 
relevant predictors, the mean value of the differences being normalized to the standard deviation of the 
differences. IncNodePurity represented the average overall trees of the total reduction in node impurity from 
splitting among a predictor in the tree-building process.  
Assessment of model performance and uncertainty measurement 
RF algorithm with 10-fold CV was used to create uncertainty map for soil EC, splitting all samples into 
calibration (75% of all samples) and validation (25% of all samples) sets during each of ten iterations. In each 
iteration, a model-building and prediction process is carried out in such a way that the distribution of the 
predicted values at the pixel level represents the uncertainty and the sensitivity of the model to changes in the 
current dataset (Yigini et al., 2018). Coefficient of determination (R2), Root mean square error (RMSE) is 
obtained for each iteration. The standard deviation (sd) of all ten predictions allowed the model sensitivity to 
be mapped, using the limited available sample set used this study.  
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Figure 1. Overall workflow in this study to map soil EC. 

Results and Discussion 
Descriptive statistics of soil data 
Soils of the study area were slightly or non-saline with a mean of 0.2 dS m-1 (Table 2) according to the criterion 
determined in Omuto et al. (2020). Soil EC values of the study area indicate that long-term land use could affect 
soil EC (Figure 2-c).  Exceptionally, high EC values in the study area (Figure 2-b) were found in the soils that 
in the marginal irrigated lands. These areas were also used for intensive agriculture.  Therefore, the surface 
EC, which is a dynamic soil property, can show high variability over short distances with intensive organic or 
chemical fertilization in marginal irrigated lands. To quantify the correlations between soil EC and 
envir -a). While there was a 
negative correlation between EC and Elevation in our study area (r = -0.32, p<0.05), EC showed a positive 
correlation with TWI (r = 0.43, p<0.05). There was a positive correlation between vegetation-based indices 
and EC (GNDVI r=0.20, GRVI r=0.39, p<0.05). Negative correlations were detected between salinity indices 
and EC values, ranging from r=-0.21 to r=-0.25 (p<0.05). Positive (r=0.27, p<0.05) relationships were 
determined between S1VV and EC in SAR data and these findings are compatible with literature (Triphati and 
Tiwari 2021) (Figure 2). 

 
Figure 2. The statistical descriptive statistics of used field observations across the study area. a) correlation graph-

Spearman correlation coefficient values of the dependent variable (EC) with predictive environmental variables (p < 
0.05), b) Density plot of the dependent variable (EC), c) Violin graph- Comparison of EC values of soil samples according 

to land uses. 
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Table 2. Descriptive statistics of soil EC based on all samples (50).  
 Mean SD CV Minimum Median Maximum Skewness Kurtosis 
Soil EC (dS m-1)  0.20 0.15 73.85 0.06 0.17 0.93 3.40 13.94 

Abbreviations: SD: Standard deviation, CV: Coefficient of Variation (%). 

Performance of spatial predictions and quantified uncertainties 
RF algorithm allowed us to identify the relationships between soil EC and selected environmental covariates 
and leverage these relationships to create a soil EC map. Modeling and mapping were executed using R-studio 
(version:  2022.07.2). The model performance criteria in the data set used at the end of the modelling process 
carried out in 10 iterations for this study are presented in Table 3. As a result of the modeling, prediction 
accuracy of soil EC was determined to be acceptable with an average RMSE of 0.07-0.08 dS m-1 CV 
performance. 
Table 3. The performance of the RF model for estimating soil EC across the study area based on R2 and RMSE of a 10-
fold CV. Variation among the performance based on the created models from different folds were presented by minumum, 
median, mean, and maximum values.  

 10-fold Cross-validation results 

 Used random samples of 75% Used random samples of 25% 

Soil property Model R2 RMSE dS m-1 R2 RMSE dS m-1 

EC RF 

Minimum 0.50 0.03 0.79 0.06 
Median 0.85 0.05 0.88 0.08 
Mean 0.81 0.07 0.88 0.08 
Maximum 0.94 0.11 0.91 0.09 

Evaluating with soil surveyor's insight how to evaluate maps beyond point estimation is an important 
contribution to the advancement of soil mapping as a science.In this regard, some of the important 
observations in our data were as follows: 1) Across the study area, areas with high soil EC values were very 
limited (Figure 3-B). To allow the qualitative evaluation of the soil surveyor, spatial maps were presented by 
zooming in on the points with higher and lower soil EC values using a geographical information system (GIS) 
(Figure 3-A, C). Land use images at the time of soil samples were also referenced for qualitative assessment 
(Figure 3-D-E). As a result of zooming in on the point with the highest EC value among all samples, it was 
observed that the high soil EC values in the surrounding pixels were detected by the RF algorithm (Figure 3-
A). Considering the land use image of this area supported the judgement of the areas around this soil sample 
(with high soil EC) as the areas with intensive agriculture. In the areas with intensive agriculture, to use 
detailed land use data as input to the models for the prediction of a dynamic soil property is recommended. 
An approach specific to the current study is demonstrated to estimate the sensitivity of the model to available 
data (spatial pattern of environmental variables) and the uncertainty of the ML models (Figure 5-B). Lands 
with complex soil formation, such as our study area, which was characterized by large plains, are often 
characterized by strong multifactorial interactions, non-linearity, and non-stationarity in data relationships. 
This makes it challenging to predict soil dynamic properties easily due to highly dynamic nature of soils in 
such lands. Despite that, the RF algorithm produced reasonable estimates for the mean soil EC maps (Figure 
3-B) within the areas that had relatively low and high soil EC values. However, the uncertainty map (Figure 5-
B) usually showed large standard deviation values for such areas. This indicated that current selection of 
environmental covariates or the quantity of soil samples were insufficient to reliably map the spatial variation 
of soil EC in those portions of the study area.  
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Figure 3. Mean maps of the predicted soil EC (dS m-1) derived from ten times random forest (RF) models (B). (A) Zoomed 
in on higher areas and (C) zoomed in on lower areas. Fotographs were taken from different areas of the study area in July 
2019 (D-E). Photo credit: Fuat KAYA, 2019-  

To provide information about the reliability of soil EC predictions, it is suggested that the areas with high 
standard deviation values need to be emphasized. Many other scientists also pointed out the importance of 
uncertainity maps when mapping soil dynamic properties for local areas with high soil heterogeneity or small 
sample sizes (Liu et al., 2022). As decision-makers often prefer to define the areas with sharp boundaries (such 
as the topsoil salinity phase in soil survey), the presentation and use of uncertainty maps are highly needed 
for improving the decision-making process (Arrouays et al., 2020). 
Relative importance of environmental variables  

IncNodePurity metrics (Figure 4). Topographic covariates such as elevation and TWI were identified as the 
most important variables in the estimation of soil EC. The covariate Aspect had the highest level of 
IncNodePurity value, which meant that Aspect was the least useful predictor in mapping soil EC in our study. 
Interestingly, the areas with extreme Aspect values in the study area matched the areas with the highest 
standard deviation or uncertainty (Figure 5-B).  

 
Figure 4. Relative importance by RF algorithm for the covariates to predict soil EC: a) %IncMSE, b) IncNodePurity. 

Lower light intensity, evaporation, air and soil temperatures were usually observed on shaded hillsides. The 
change between soil freezing and thawing was also less frequent on shady hillsides relative to the sunny sides. 
As a result, soils on shaded hillsides exhibited stronger and deeper water penetration than those on generally 
more sunny hillsides. However, the dissociation intensity was lower on colder shaded hillsides. Similar results 
were also found in other studies (Blume et al. 2016). The current study area exhibited an undulating 

structure in our study area may be effective in the natural change of the EC value. However, covariates related 
to farming history (e.g., tillage, fertilization, cropping system) can be useful to be included in modeling that 
were not present in our study.  
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Figure 5. (B) Uncertainty maps by standard deviation of the predicted soil EC (dS m-1) derived from running RF 

algorithm ten times with CV. (A) Zoomed in on higher areas and (C) zoomed in on lower areas. (D&E) The fotographs 
were taken from different locations within the study area in July 2019 using a digital camera. Photo credit: Fuat KAYA, 

2019-  

Conclusion 
Soil EC is one of the dynamic soil properties. It should always be determined in the most up-to-date form. EC 
data can be obtained from soil maps that are not up-to-date and be produced with coarse-resolution 
conventional approaches.In this study, there is the production of a digital soil EC map based on soil analysis 
with 50 samples.The process was performed by integrating the RF algorithm and a detailed digital surrogate 
of soil formation factor in a high-performance computational environment with adaptive quantification of the 
predictive soil mapping paradigm over a large area with complex soil dynamics.In the study, the associated 
uncertainty map for soil EC predictions was successfully generated.Spatial information about soil EC created 
in this study can provide remarkable insights into decision-making processes aligning with the increasing 
need for soil information for sustainable development goals in the future.The approach proposed in the study 
may be an opportunity for the production of the salinity phase in detailed soil maps. In addition, associated 
uncertainty fields can show priority points in the selection of soil samples for salinity.  
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