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Abstract We study the solutions of the wave equation
where a massless scalar field is coupled to the Wahlquist
metric, a type-D solution. We first take the full metric, and
then write simplifications of the metric by taking some of
the constants in the metric null. When we do not equate any
of the arbitrary constants in the metric to zero, we find the
solution is given in terms of the general Heun function, apart
from some simple functions multiplying this solution. This is
also true, if we equate one of the constants Q0 or a1 to zero.
When both the NUT related constant a1 and Q0 are zero,
the singly confluent Heun function is the solution. When we
also equate the constant ν0 to zero, we get the double conflu-
ent Heun-type solution. In the latter two cases, we have an
exponential and two monomials raised to powers multiply-
ing the Heun type function. Thus, we generalize the Batic et
al. result for type-D metrics for this metric and show that all
variations of the Wahlquist metric give Heun type solutions.

1 Introduction

The Wahlquist metric, written as “an exact interior solution
for the finite rotating body of perfect fluid” was discovered
in 1968 [1–3]. It is an axially symmetric, stationary, type-
D solution of Einstein’s field equation. Quoting Wahlquist
[1], it can be “described as a superposition of a Kerr-NUT
metric [4,5] and a rigidly rotation perfect fluid in the same
space-time region.” The original metric written in [1], was
slightly modified by Senovilla [6,7], and put to new form by
Mars, “to show that the Kerr-de Sitter and Kerr metrics are
contained as subcases” [8].

Mars states in [8] that Kramer [9,10] showed the vanishing
of the Simon tensor [11] for this metric. Mars also states that
the space-time admits a Killing tensor as shown in [12]. More
recent work in this field exists, “where the existence of a rank-
2 generalized closed conformal Killing–Yano tensor with a
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skew-symmetric torsion” [13], and “the separability of the
Maxwell equation on the Wahlquist spacetime” are shown
[14].

Batic and Schmid showed, in their paper [15], that the
solutions to the “Teukolsky Master Equation” [16] could be
transformed in any physically relevant D type metric into one
of the solutions of the Heun function, to its general or to one
of its confluent forms [17–21]. Here we check if this is true
in the Wahlquist metric.

Another peculiarity of this metric is that, if we use
Euclidean variables, the radial and angular equations look
exactly like each other. We, therefore, solve just the radial
differential equation and get the solutions of the angular
equation at the same time. This is a property shared by the
solutions in the background of the Kerr and Kerr-de Sitter
metrics [4], at least in a limit [22]. The relation between the
Wahlquist and Kerr solutions is generally known [1,8]. It is
interesting that an unrelated exact solution also share this
property [23,24].

Here we try to get the form of the exact solutions when a
massless scalar field is coupled using this metric in full and
also, in some cases when the metric is reduced to a simpler
form. If all the constants, Q0, a1, β, ν0, μ0 appearing in the
metric given in [8] are not equal to zero, we get a general Heun
solution (HG) with four regular singularities multiplied by
an exponential and two polynomials. This is also true if we
take just one constant in the Wahlquist metric, Q0, or a1 null,
and give arbitrary non zero values to the other constants. As
explained below lnx is approximated by simple polynomials
in this calculation.

If we set both Q0 and the NUT parameter a1 [25] equal
to zero, we get the solution in terms of the (singly) con-
fluent Heun (HC) solution up to factors multiplying HC, as
described above. If we now equate still another constant, ν0,
to zero, we get the double confluent Heun function (HD) up to
multiplying exponent and mononomials raised to powers. In
the next section, we will describe our results. In an appendix,
we give a calculation which is distantly related to this metric.
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2 Heun-type solutions

Here we try to calculate the massless scalar ψ where it obeys
the equation

1√
g
∂μgμν√g∂νψ = 0, (1)

using the metric given in [1]. Here g is the determinant of
the metric coefficients gμν . We write the metric as is given
in [13], which is equivalent to the one given in [8]. Here
the comoving, pseudoconfocal, spatial coordinates are used,
which are closely related to the oblate-spheroidal coordinates
in Euclidean geometry. We take 4πG and c equal to unity.

ds2 = (v1 + v2)

(
dz2

U
+ dw2

V

)

+ U

v1 + v2
(dτ + v2dσ)2 − V

v1 + v2
(dτ − v1dσ)2,

(2)

where

U = Q0 + a1
sinh(2βz)

2β
− ν0

β2

cosh(2βz) − 1

2β2

− μ0

2β2

[
cosh(2βz) − 1

2β2 − z
sinh(2βz)

2β

]
, (3)

V = Q0 + a2
sin(2βw)

2β
+ ν0

β2

−cos(2βw) + 1

2β2

− μ0

2β2

[
cos(2βw) − 1

2β2 + w
sin(2βw)

2β

]
, (4)

and

v1 = cosh(2βz) − 1

2β2 , v2 = −cos(2βw) + 1

2β2 . (5)

This metric has six real constants Q0, a1, a2, ν0, μ0, β. Here
a1 is related to the NUT [25,26] parameter and a2 is related to
the mass parameter. One writes the other variables to express
the energy density, pressure and the fluid velocity of the per-
fect fluid. β is related to the scaling of z and w, both space
coordinates, in the linear transformation of these variables
given in the original paper by Wahlquist [1]. U and V are
related to h2, h1 in the original metric and to the invariant
μ0, ν0. All these parameters are scaled so that they do not
vanish in the β going to zero limit. The wave equation written
in this metric separates easily. Our ansatz for the solution is

ψ = R(x)Y (w)T (τ )S(σ ). (6)

We have two Killing vectors since the metric does not depend
on τ and σ explicitly, related to t and θ in the original metric
[1]. If we make a Wick rotation which changes w to y = iw,
and a2 to −ia2 [8], where i is the square root of minus unity,
the metric becomes symmetrical

ds2 = (v1 + v2)

(
dz2

U
− dy2

V

)

+ U

v1 + v2
(dτ − v2dσ)2 − V

v1 + v2
(dτ + v1dσ)2.(7)

Then, we have identical equations for z and y. The equation
for z reads

∂z(U∂z)R(z)T (τ )S(σ )

+
(

v2
1

U
∂2
τ − 2

v1

U
∂τ ∂σ + 1

U
∂2
σ

)
R(z)T (τ )S(σ ) = 0. (8)

We get exactly the same equation for the new variable y, with
appropriate changes like U going to V and v1 going to v2.

∂y(V ∂y)Y (y)T (τ )S(σ )

+
(

v2
2

V
∂2
τ − 2

v2

V
∂τ ∂σ + 1

V
∂2
σ

)
Y (y)T (τ )S(σ ) = 0. (9)

Since the functions v1, U (similarly v2, V ) do not depend
on τ and σ , the solutions for τ and σ are just exponential
functions, giving us constants upon differentiation. Here we
will try to solve the differential equation for a massless scalar
field, minimally coupled in the background of this metric.

We find that this is not an easy task. The presence of
hyperbolic sine and cosine functions in the wave equation
prevents us from using standard methods. We change our
variables as x = exp(2βz) which makes it possible to write
the hyperbolic sine and cosine functions in terms of powers
of x . sinh(2βz) = 1/2[x −1/x], cosh(2βz)−1 = 1/2[x +
1/x − 2]. Then, however, exists the relation z = lnx/(2β).
The codes we have to solve differential equations analyti-
cally, does not recognize lnx for analyzing the singularities.
Thus, we can not give an exact solution for all values of the
independent variable x . We can get solutions only in differ-
ent patches, by using polynomial expressions approximating
lnx in this region to give us an idea what the solution may
be.

We use different independent variables to check the valid-
ity of this approach. Luckily at different points that we
expanded lnx , our solutions were of the same type. We also
plot some of the solutions around these points. We use the
package given in [27] to analyze the singularity structure of
our equations.

Upon the variable change from z to x , we get the new
equation

d2 R(x)

dx2 +
( dU

dx

U
+ 1

x

)
d

dx
R(x)

+ 1

x2U 2

(
ω2v2

1 − 2v1ωs + s2)R(x) = 0. (10)

Here we used the solution to the τ equation in the form
exp(−ωτ) and the solution for the σ equation in the form
exp(−σ s). Note that our metric had Killing vectors for both
τ and σ . Here
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Fig. 1 The numerical behavior of Eq. (10)

U = Q0 + a1
(x − 1/x)

4β

−
[

μ0

4β4 + ν0

4β3

]
(x − 1)2

x
+ μ0

4β4 lnx
(x2 − 1)

x
, (11)

v1 = (x − 1)2

2xβ2 . (12)

From here on, we will define μ′
0 = μ0

(4β4)
and ν′

0 = ν0
(4β3)

,

a′
1 = a1/β and use these new constants in our equations.

Before applying approximations, we can analyze our
equation (10) numerically to see its behavior. Note that our
differential equation has four singular points, at zero, one
and at two other points. Here the point when x = 0 is for the
original independent variable z going to minus infinity. We,
therefore, start our graph at a point starting from x > 1.

We take Q0 = 0.1, a1 = 1, β = 1.0, μ′
0 = 1.0, ν′

0 =
4.0, ω = 1.0, s = 10.0 and use the 4th order Runge-Kutta
method as explained in [28].

As we can see from the numerical solution given in Fig. 1
and from the function U which governs the singularity behav-
ior of the equation, the point x = 1 is a singularity. Here, we
start our numerical integrator very close to the singular point
x = 1 that yields an unstable behavior around this point.
However, as we move towards x > 1, we get a well-behaving
curve.

To study the solution around the singularity x = 1, we
expand lnx in the neighborhood of this point and use x − 1
instead of lnx in the wave equation we use in our further
calculations.

We find that, if we keep all our constants non zero, we get
the exact solution in terms of HG up to an exponential and
terms (polynomials) multiplying this function. The regular
singularities are at 0 and at three other finite points which are
very lengthy expressions.

Then we go to the next possible choice. We try to find the
solution when we keep all the terms in U aside from Q0,
which we set equal to zero. Then, our equation, again, has

Fig. 2 Numerical solution of Eq. (10): HC solution (β = 1.0, μ′
0 =

1.0, ν′
0 = 4.0, ω = 1.0, s = 10.0)

four regular singularities at 0, 1 and the points − 1
2μ′

0
(B ±

C1/2). Here B = (a′
1 − ν′

0 − μ′
0), C = B2 − 4μ′

0(a
′
1 + ν′

0).
It is known that this and the solution given in the paragraph
above may be reduced to HG, the general Heun function
[17,18].

We check this result by going to a different independent

variable u = (μ′
0−ν′

0)x
ν′

0(1−x)
, as suggested in the paper by Suzuki et

al. [29,30]. For the general case, we can identify the singular
points. There are four regular singularities, at zero, infinity
and two other finite points. This is consistent by the result
given above when the variable x was used.

Then, we set a′
1 = 0, and try to see what kind of exact

solution we obtain for this simplified case near the point
x = 1. We again approximate lnx by the expression x − 1.
Then, the equation reads

d2 R(x)

dx2 + 2

x

D

E

d R(x)

dx
+ 4β2 F2

x2 E2 R(x) = 0, (13)

where

D = μ′
0x2(x − 1) − 1

2
(μ′

0 + ν′
0)(x − 1)2 − ν′

0

2
(x2 − 1),

(14)

E = μ′
0(x2 − 1)(x − 1) + (−μ′

0 − ν′
0)(x − 1)2, (15)

F = ωx2 + (4s − 2ω)x + ω. (16)

Our solution is a confluent Heun function, HC, which is mul-

tiplied by exp( Asx
x−1 ), and powers of (x − ν′

0
μ′

0
) and (x − 1).

Here the regular singular points are at 0,
ν′

0
μ′

0
. A is a constant.

There is also an irregular singularity when x equals unity.
The numerical behavior of this equation is given in Fig. 2
with some numerical values of the physical parameters.

We again check this result by going to the independent

variable u = (μ′
0−ν′

0)x
ν′

0(1−x)
, to see if there is a change in the result.

We try to find the solution as u goes to infinity. There we
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Fig. 3 The numerical behavior of Eq. (17): H D solution (β =
1.0, μ′

0 = 1.0, ω = 1.0, s = 10.0)

approximate lnx = ln
uν′

0
(u−1)ν′

0+μ′
0

by the expression
(ν′

0−μ′
0)

ν′
0u

.

The solution is in the same form. There are still two regular

singularities at u = −μ′
0

ν′
0

and u = −μ′
0−ν′

0
ν′

0
, and one irregular

singularity at u going to infinity. One of the regular singu-
larities corresponds to x equal to infinity and the irregular
singularity is at x equal to unity, where we had an irregular
singularity when we used the variable x . The existence of the
confluent Heun function and the positions of these two sin-
gularities are consistent with the singularities with the case
when we took ln(x) as x − 1.

As a final attempt, we try to find if we can get HD, dou-
ble confluent Heun function [17], from this solution. We
equate two regular singularities we found above. This may
be obtained if we take the constant ν0 equal to zero. Since
we divide by ν0 in some of our latter expressions, we equate
ν0 to zero in the original wave equation. This simplifies the
wave equation. It reads

d2 R(x)

dx2 + 2

(
1

x
+ 1

x − 1

)
d R(x)

dx
+

(
β

μ′
0

)2

(
ω2

x4 + 8sω

x3(x − 1)2 + 16s2

x2(x − 1)4

)
R(x) = 0. (17)

In this expression, we approximated lnx by x − 1 to find the
singularity near x equal to unity. The irregular singularities
x = 0 and x = 1 are seen explicitly. There are no singularities
at other points, including infinity. The solution will be HD
function multiplied by exponentials. We need them to get rid
of the most violent singularities to get a solution as a power
series expansion, as in HD. The numerical behavior of this
equation is given in Fig. 3.

We again go to similar coordinates given in [13], ζ = x−1
x .

Then the wave equation is written as

d2 R(ζ )

dζ 2 + 2

(
1

1 − ζ
+ 1

ζ

)
d R(ζ )

dζ
+

(
β

μ′
0

)2

Fig. 4 The numerical behavior of the Eq. (18) (β = 1.0, μ′
0 =

1.0, ω = 1.0, s = 10.0)

(
ω2 + 8sω(ζ − 1)

ζ 2 + 16s2(ζ − 1)2

ζ 4

)
R(ζ ) = 0, (18)

which explicitly shows the irregular singularity at ζ = 0
(x = 1). The numerical behavior of this equation is given in
Fig. 4.

To check the second irregular singularity, we take ζ =
−1/ξ . Then the wave equation reads

d2 R(ξ)

dξ2 − 2

(
1

ξ + 1

)
d R(ξ)

dξ
+

(
β

μ′
0

)2

(
ω2

ξ4 + 8sω(ξ + 1)

ξ3 + 16s2(ξ + 1)2

ξ2

)
R(ξ) = 0. (19)

One should note that this equation is really valid for ξ around
ξ = −1. We anticipate that the general behaviour of the
equation does not change close to ξ around zero.

We can not check the behaviour of lnx near x = 0. This
singularity comes as a regular singularity from our transfor-
mation from z to x in the equation without approximations.
It corresponds to the point as z goes to minus infinity. Note
that lnx as x goes to zero, does not create an additional sin-
gularity, since lnx appears as xlnx in our expressions, and
xlnx is zero in this limit. For the case when only Q0, a1 are
equal null, it appears as a regular singularity, giving us HC
type solutions.

3 Conclusion

Batic et al. [15] showed that the solutions of the equations are
Heun-type if a type-D metric is used as a background. Here
we investigated if this is true for the Wahlquist metric and
calculated the solutions of the wave equation for a massless
scalar field, in the background of the Wahlquist metric. We
studied first the full metric and then some reductions of it.
We found that in all the four cases studied, the solutions were
Heun-type, namely HG, HC and HD for these different cases,
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thus, generalizing the Batic et al. result for the scalar field
case. In an Appendix, we showed that the same is true in a
radically reduced form of this metric, which may no longer
be classified as related to the Wahlquist metric, since the dust
is not present.
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and Dr. Hasan Tuncay Özçelik for technical assistance in the early
phases of this work. He also acknowledges very fruitful conversations
with Prof. Avedis S. Hacinliyan and Prof. M. Nazmi Postacioğlu. The
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Appendix

Here we will give an application of the Mathieu function,
which is obtained in an extreme reduction of the metric given
in our equation (1) where we take both U and V equal to Q0,
taking all the other constants null. This metric will not be a
solution of any special case of the Wahlquist metric, since in
this metric μ0 must be different from zero. Mathieu function
is a special case of HD [31]. A similar calculation to the one
given below was given in [24]. Here we will try to calculate
the Green function for a massless scalar field coupled to this
special metric with both U and V are constants, i.e. we try
to calculate G where it obeys the equation

1√
g
∂μgμν√g∂νG(x, x ′) = −δ4(x, x ′), (20)

where g is the determinant of the metric coefficients gμν .
Here x, x ′ are generic independent variables, with no con-
nection to x used in the main text. This metric is not flat. The
Ricci scalar is given by

R = −16β4 cosh(2βz) cos(2βw) − 1

(− cosh(2βz) + cos(2βw))3 . (21)

First we write the equation for the wave equation when the
right hand side is null. Our ansatz for the wave solution φ is

φ = R(z)P(w)T (τ )S(σ ). (22)

We will write the separated wave equation in two parts.

∂2
z R(z)

R(z)
+

(
v2

1

Q2
0

∂2
τ T (τ )

T (τ )
+ 2

v1

Q2
0

∂τ T (τ )

T (τ )

∂σ S(σ )

S(σ )

+ 1

Q2
0

∂2
σ S(σ )

S

)
− λ = 0, (23)

∂2
w P(w)

P(w)
+

(
v2

2

Q2
0

∂2
τ T (τ )

T (τ )
− 2

v1

Q2
0

∂τ T (τ )

T (τ )

∂σ S(σ )

S(σ )

+ 1

Q2
0

∂2
σ S(σ )

S

)
= −λ. (24)

Recall that

v1 = cosh(2βz) − 1

2β2 , v2 = −cos(2βw) + 1

2β2 . (25)

We take T = exp(−iτkτ ), P(w) = exp(−iσkσ ). We see
that we can not simplify the problem in full generality. We
take kτ = k cos(φ), kσ = k sin(φ). To simplify, we have to
fix tan φ = 1

2β2 , which means we are confined to a single
line on the τ − σ plane. Of course we could our solution
completely independent of either τ or σ to give a similar
result. If we continue with our first choice, we get

4β4k2(v2
1 + 2v1 + 1) = k2cosh22βz

= 1/2k2(cosh4βz + 1), (26)

4β4k2(v2
2 − 2v2 + 1) = k2cos22βy

= 1/2k2(cos4βy + 1), (27)

d2 P(w)

dw2 − (k2cos2(2βz) − λ)P(w) = 0, (28)

and

d2 R(z)

dz2 − (k2cosh2(2βz))R(z) = λR(z). (29)

Solutions of both of these equations are expressed in terms
of Mathieu functions. We see in Figs. 3 and 4, in a more
general (HD) case, that these are oscillation solutions. We
first take the angular equation. “We are interested only in
the periodic solutions of this equation with period 2π . These
solutions exist only for discrete values of the separation con-
stant λ and they are given by even and odd periodic Math-
ieu functions Sen(cos(2βw)) and Sen(cos(2βw)) [24,32].
When the constants k go to zero these solutions reduce to
trigometric functions and the seperation constants go to the
square of an integer. The solutions of the z may be expressed
in terms of Bessel-Mathieu functions Jen(2βω, cosh(2βz)),
Jon(2βω, cosh(2βz)) and Hankel like Mathieu functions
Hen(2βω, cosh(2βz)),
Hon(2βω, cosh(2βz)) respectively [32].
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We sum over the discrete values from zero to infinity for
the Mathieu functions using formulae in [24,32]. We have to
evaluate

G(x, x ′) = 1

(2π)

∫ ∞

0
k dkeikY gh(z, z′, w, W ′). (30)

Here

gh(z, z′, w, w′)
4π

=
∞∑

n=1

[
Sen(h, cos(2βw))Sen(h, cos(2βw′))

Men(h)
A

+ Son(h, cos(2βw′))Son(h, cos (2βw))

Mon(h)
B

]
, (31)

A = [θ(z − z′)Jen(h, cosh(βz′))Hn(h, cosh(βz))]
+[θ(z′ − z)Jen(h, cosh(βz))Hn(h, cosh(βz′))],

(32)
B = [θ(z − z′)Jen(h, cosh(βz′))Hn(h, cosh(βz))]

+[θ(z′ − z)Jen(h, cosh(βz))Hn(h, cosh(βz′))].
(33)

�(z′ − z) is the Heavyside unit step function and

Men =
∫ 2π

0
|Sen|2 dθ, Mon =

∫ 2π

0
|Son|2 dθ, (34)

where we equated the variable 2βw to θ , are used to normal-
ize the above sum. One can show that

gh(z, z′, w,w′)
π

= H0(k Z), (35)

where H0 is the Hankel function and

4Z2 = cosh2(2βz′) − sin2(2βw) + cosh2(2βz))

− sin2(2βw′) − 2 cosh(2βz′) cosh(2βz)cos(2βw)cos(2βw′)
−2 sinh(2βz) sinh(2βz) sin(2βw) sin(2βw). (36)

Y 2 = (τ − τ ′)2 + (σ − σ ′)2, α = Y. (37)

We first perform the k integration using the standard inte-
grals [33]
∫ ∞

0
k exp(ikY )J0(k Z) dk = (Z2 − Y 2)−1 P1

(
iY√

Z2 − Y 2

)
, (38)

∫ ∞

0
k exp(ikY )N0(k Z) dk = (Z2 − Y 2)−1 Q1

(
i√

Z2 − Y 2

)
. (39)

where P1 and Q1 are Legendre functions of first and second
kind. We can also use the formula [34]∫ ∞

0
k exp(ikY )K0(k Z)dk = (−Z2 − Y 2)−1

×
(

Y√−Z2 − Y 2
ln

[
Y/Z +

√
Y 2

Z2 − 1

]
− 1

)
, (40)

which gives∫ ∞

0
k exp(ikY )K0(−ik Z) dk = (Z2 − Y 2)−1

×
(

iY√
Z2 − Y 2

ln

[
Y/Z +

√
Y 2

Z2 − 1

]
− 1

)
. (41)

This is the result we obtain for the Green’s function in three-
dimensions for this metric.
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