Dergi makalesi Açık Erişim
Borello, Martino; Guneri, Cem; Sacikara, Elif; Sole, Patrick
{
"@context": "https://schema.org/",
"@id": 236916,
"@type": "ScholarlyArticle",
"creator": [
{
"@type": "Person",
"affiliation": "Univ Paris 08, Univ Sorbonne Paris Nord, CNRS, UMR 7539,Lab Geometrie Analyse & Applicat,LAGA, F-93430 Villetaneuse, France",
"name": "Borello, Martino"
},
{
"@type": "Person",
"affiliation": "Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkey",
"name": "Guneri, Cem"
},
{
"@type": "Person",
"affiliation": "Univ Zurich, Inst Math, Zurich, Switzerland",
"name": "Sacikara, Elif"
},
{
"@type": "Person",
"affiliation": "Aix Marseille Univ, CNRS, Ctr Marseille, I2M, Marseille, France",
"name": "Sole, Patrick"
}
],
"datePublished": "2021-01-01",
"description": "The decomposition of a quasi-abelian code into shorter linear codes over larger alphabets was given in Jitman and Ling (Des Codes Cryptogr 74:511-531, 2015), extending the analogous Chinese remainder decomposition of quasi-cyclic codes (Ling and Sole in IEEE Trans Inf Theory 47:2751-2760, 2001). We give a concatenated decomposition of quasi-abelian codes and show, as in the quasi-cyclic case, that the two decompositions are equivalent. The concatenated decomposition allows us to give a general minimum distance bound for quasi-abelian codes and to construct some optimal codes. Moreover, we show by examples that the minimum distance bound is sharp in some cases. In addition, examples of large strictly quasi-abelian codes of about a half rate are given. The concatenated structure also enables us to conclude that strictly quasi-abelian linear complementary dual codes over any finite field are asymptotically good.",
"headline": "The concatenated structure of quasi-abelian codes",
"identifier": 236916,
"image": "https://aperta.ulakbim.gov.tr/static/img/logo/aperta_logo_with_icon.svg",
"license": "http://www.opendefinition.org/licenses/cc-by",
"name": "The concatenated structure of quasi-abelian codes",
"url": "https://aperta.ulakbim.gov.tr/record/236916"
}
| Görüntülenme | 45 |
| İndirme | 10 |
| Veri hacmi | 1.4 kB |
| Tekil görüntülenme | 42 |
| Tekil indirme | 10 |