Dergi makalesi Açık Erişim
Borello, Martino; Guneri, Cem; Sacikara, Elif; Sole, Patrick
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/236916</identifier>
<creators>
<creator>
<creatorName>Borello, Martino</creatorName>
<givenName>Martino</givenName>
<familyName>Borello</familyName>
<affiliation>Univ Paris 08, Univ Sorbonne Paris Nord, CNRS, UMR 7539,Lab Geometrie Analyse & Applicat,LAGA, F-93430 Villetaneuse, France</affiliation>
</creator>
<creator>
<creatorName>Guneri, Cem</creatorName>
<givenName>Cem</givenName>
<familyName>Guneri</familyName>
<affiliation>Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkey</affiliation>
</creator>
<creator>
<creatorName>Sacikara, Elif</creatorName>
<givenName>Elif</givenName>
<familyName>Sacikara</familyName>
<affiliation>Univ Zurich, Inst Math, Zurich, Switzerland</affiliation>
</creator>
<creator>
<creatorName>Sole, Patrick</creatorName>
<givenName>Patrick</givenName>
<familyName>Sole</familyName>
<affiliation>Aix Marseille Univ, CNRS, Ctr Marseille, I2M, Marseille, France</affiliation>
</creator>
</creators>
<titles>
<title>The Concatenated Structure Of Quasi-Abelian Codes</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2021</publicationYear>
<dates>
<date dateType="Issued">2021-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/236916</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/s10623-021-00921-4</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">The decomposition of a quasi-abelian code into shorter linear codes over larger alphabets was given in Jitman and Ling (Des Codes Cryptogr 74:511-531, 2015), extending the analogous Chinese remainder decomposition of quasi-cyclic codes (Ling and Sole in IEEE Trans Inf Theory 47:2751-2760, 2001). We give a concatenated decomposition of quasi-abelian codes and show, as in the quasi-cyclic case, that the two decompositions are equivalent. The concatenated decomposition allows us to give a general minimum distance bound for quasi-abelian codes and to construct some optimal codes. Moreover, we show by examples that the minimum distance bound is sharp in some cases. In addition, examples of large strictly quasi-abelian codes of about a half rate are given. The concatenated structure also enables us to conclude that strictly quasi-abelian linear complementary dual codes over any finite field are asymptotically good.</description>
</descriptions>
</resource>
| Görüntülenme | 45 |
| İndirme | 10 |
| Veri hacmi | 1.4 kB |
| Tekil görüntülenme | 42 |
| Tekil indirme | 10 |