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A B S T R A C T   

Char produced from lignocellulosic biomass via slow pyrolysis have become one of the most feasible alternatives 
that can partially replace the utilisation of fossil fuels for energy production. In this study, the relationship 
between compositions of lignocellulosic biomass, operating conditions of slow pyrolysis, and characteristics of 
produced char have been analysed by using multiple nonlinear regression (MnLR) and artificial neural networks 
(ANN). Six input variables (temperature, solid residence time, production capacity, particle size, and fixed 
carbon and ash content) and five responses (char yield, and fixed carbon, volatile matter, ash content, HHV of 
produced char) were selected. A total of 57 literature references with 393–422 datasets were used to determine 
the correlation and coefficient of determination (R2) between the input variables and responses. High correlation 
results (>0.5) existed between pyrolysis temperature and char yield (-0.502) and volatile matter of produced 
char (-0.619), ash content of feedstock and fixed carbon (-0.685), ash content (0.871) and HHV (-0.571) of 
produced char. Whilst the quadratic model was selected for the regression model, then the model was further 
optimised by eliminating any terms with p-values greater than 0.05. The optimised MnLR model results showed a 
reasonable prediction ability of char yield (R2 = 0.5579), fixed carbon (R2 = 0.7763), volatile matter (R2 =

0.5709), ash (R2 = 0.8613), and HHV (R2 = 0.5728). ANN model optimisation was carried out as the results 
showed “trainbr” training algorithm, 10 neurons in the hidden layer, and “tansig” and “purelin” transfer function 
in hidden and output layers, respectively. The optimised ANN models had higher accuracy than MnLR models 
with the R2 greater than 0.75, including 0.785 for char yield, 0.855 for fixed carbon, 0.752 for volatile matter, 
0.951 for ash and 0.784 for HHV, respectively. The trained models can be used to predict and optimise the char 
production from slow pyrolysis of biomass without expensive experiments.   

1. Introduction 

Lignocellulosic biomass such as wood, forest residue and agricultural 
materials can be used to produce solid, liquid and gaseous products via 
chemical, thermochemical, and biochemical technologies [1]. Thermo-
chemical processes, such as gasification, pyrolysis and hydrothermal 
liquefaction, are the most widely used technologies for biofuel produc-
tion [2]. Pyrolysis is a thermal degradation process in which biomass is 
degraded in an oxygen-free medium with an inert carrier gas such as 
nitrogen to produce biofuels. Oxygen-free medium eliminates the com-
bustion reaction and decreases the thermal stability of biomass at high 
temperature. The inert carrier gas can also purge the primary pyrolysis 
vapours out of the reactor to minimise secondary vapour phase cracking 
reactions. According to the heating rate and solid/vapour residence 

time, pyrolysis operations can be divided into two types, fast and slow 
pyrolysis. When liquid production is the focus, fast pyrolysis is typically 
applied with short solid/vapour residence times in the order of seconds 
(e.g. 1− 2 s) and rapid heating rates (e.g. 500 W/m2 K). If the solid 
product (i.e. char) is the main aim, slow pyrolysis with longer solid/-
vapour residence times is preferred [3]. 

Slow pyrolysis operates at lower temperatures (300 ◦C–600 ◦C) along 
with lower heating (5− 20 ◦C/s) and longer solid residence times (10–60 
min s). Such process parameters allow the optimisation of char yield 
with ca. 30− 50 wt% by reducing the secondary thermal cracking and 
volatile component releases from biomass. The char production by slow 
pyrolysis has been affected not only by the process parameters but also 
the properties of the feedstocks. As summarised by Tripathi et al. [4], 
reaction conditions and feedstock composition are affecting product 
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yield and the properties of the pyrolysis products. Critical operating 
conditions include pyrolysis temperature, pressure, reaction time, par-
ticle size etc. Increasing the pyrolysis temperature reduces the char yield 
as higher temperature leads to the release of the volatile components of 
biomass and the further thermal cracking of hydrocarbon materials. 
Around atmospheric pressures, in a broad range of 0.5–5 MPa, can be 
utilised for slow pyrolysis. Increasing the pressure will increase the gas 
yield, as well as the fixed carbon content and specific surface area of 
produced char. Long solid residence times (30–60 min s) provide suffi-
cient time for the completion of secondary repolymerisation reactions 
and enhance the pore formation in char [4]. The use of inert gas can be 
optional, however, when utilised, the flow rate should be carefully 
maintained because a high flow rate will purge most of the vapour, 
resulting in lower vapour residence time. The preferable biomass par-
ticle size and the production capacity for slow pyrolysis are mainly 
dependent on the size of reactors. Usually, the biomass particle sizes in 
the range of 1 mm–200 mm are preferred. Increasing the biomass par-
ticle size leads to thermally thick heat transfer regimes (Biot 
number>>1) reducing the formed primary pyrolysis vapours that travel 
through the biomass layer; this results in higher repolymerisation and 
char formation [5]. Slow pyrolysis has been investigated via various 
types of reactors, including fixed-bed (batch), auger and bubbling 
fluidised-bed (continuous). 

The compositions of the lignocellulosic biomass also have a big in-
fluence on the char production and characteristics. The physicochemical 
properties of the lignocellulosic biomass are measured by using proxi-
mate and ultimate analysis. Proximate includes fixed carbon (5− 25 wt 
%), volatile matter (50− 80 wt%), ash (5− 20 wt%), moisture contents 
(10− 30 wt%) and high heating value (10− 30 MJ/kg), whilst ultimate 
includes carbon (40− 60 wt%), hydrogen (5− 8 wt%), oxygen (30− 55 wt 
%), nitrogen (<1 wt%), and sulphur (<1 wt%) contents. Biomass may 
undergo various pre-treatment steps, such as torrefaction and solar 
drying, to reduce its moisture content to less than 10 wt% [6]. After slow 
pyrolysis, the fixed carbon content (50− 80 wt%), elemental carbon 
content (50− 80 wt%), ash content (10− 50 wt%), and high heating value 
(15− 35 wt%) significantly increases, while a decreasing trend in the 
volatile matter (10− 25 wt%), moisture (<5 wt%), hydrogen (<5 wt%) 
and oxygen (5− 30 wt%) contents can be observed. The aromaticity and 
stability of the char can be determined by the H/C molar ratios. Whilst 
the polarity and surface oxidation of the char can be determined by the 
O/C molar ratios. One of the challenges of slow pyrolysis is that the 
produced char contains high ash content (10-50 wt%), involving alkali 
and alkaline earth metals (AAEMs). Such high ash contents in the form 
of char cause slagging, fouling, and corrosion behaviours in the com-
bustion process [7]. 

Modelling of biomass conversion processes is necessary for process 
scale-up, optimisation and control in industrial applications. Due to the 
complexity and heterogeneity of the physicochemical structure of the 
biomass, it is difficult to develop mathematical models to simulate 
biomass conversion processes from the first principles. Therefore, re-
searchers have tried to apply other mathematic tools to tackle the 
problems, including multiple regression and artificial neural network. 

Multiple nonlinear regression (MnLR) is a statistical tool to analyse 
the correlation between the input variables and responses. The corre-
lation models can be achieved by using different functions of the 
regression, including linear, linear with two-factor interaction (2FI), 
quadratic and cubic models [8]. The accuracy of the correlation models 
can be determined by the measures, such as the mean squared error and 
the coefficient of determination R2. The regression analysis has been 
widely used in the biomass conversion processes, such as predicting 
higher heating values [9], optimising hydrothermal carbonisation [10], 
pyrolysis [11,12], and gasification [13]. For example, Ates and Erginel 
found that the char yield of fast pyrolysis can be predicted by a loga-
rithmic model of the pyrolysis temperature [11]. Figueiredo et al. also 
showed that the combined yield of monomeric aromatics and alkyl-
phenolics in the pyrolysis oil were predicted accurately by a simple 

model based on the feedstock properties and reaction conditions [12]. 
Artificial neural network (ANN) is a self-learning method that can be 

used on many applications such as facial recognition, self-driving cars, 
price prediction for financial markets, and the predictions of possible 
outcomes for industrial processes. ANNs analyse a large number of 
datasets and trains themselves to recognise patterns between datasets, 
then predicts the nonlinear relationships and correlation between the 
input variables and responses. In the research area of bioenergy, ANNs 
have been developed to predict the thermal properties of biomass 
[14–16], and model biomass gasification [17–19], torrefaction [20], 
hydrolysis [21] and pyrolysis [3,22,23] processes. Zhu et al. developed 
prediction models for the yield and carbon contents of char produced by 
pyrolysis of lignocellulosic biomass using machine learning [3]. The 
input variables used in Zhu et al.’s study included properties of feed-
stock, such as contents of lignin, cellulose, hemicellulose and ash, 
elemental compositions and particle size, and pyrolysis conditions, such 
as heating rate, highest treatment temperature and residence time. 245 
datasets of char yield and 128 datasets of carbon content in char were 
used for the model training. They found that pyrolysis temperature was 
the dominating factor in the char yield and carbon content of the 
product. One drawback of the research was the requirement of structural 
information and the elemental composition of the feedstock. Most of the 
research published on the pyrolysis of biomass only reported the prox-
imate analysis results of feedstock, which had limited the dataset 
available for model training. The higher heating values of produced char 
was also not predicted but is relevant in the char production industry 
and energy-generating plants. Ozonoh et al. used ANN to optimise the 
torrefaction process of coal/biomass/waste tyre blends and predict char 
yield, enhancement factor and higher heating value using torrefaction 
temperature, torrefaction time and blend ratio [20]. It was shown that it 
was feasible to predict char yield and higher heating value of produced 
char using ANN models. 

To our best knowledge, there is no model to predict the char yield 
and char properties from a slow pyrolysis. The study aims to model the 
relationships between the input variables (operating parameters and 
biomass compositions) of a slow pyrolysis process and responses (char 
yield and characteristics of the solid product) by using multiple 
regression and artificial neuron network models, as well as to identify 
the most accurate models. The trained models can be used to predict and 
optimise the char production from slow pyrolysis of biomass without 
expensive experiments. 

2. Experimental data and analysis method 

2.1. Data collection 

The experimental results of char production from lignocellulosic 
biomass via slow pyrolysis were collected based on an extensive survey 
of the scientific literature. As summarised in Table 1, a total of 57 ref-
erences were reviewed. Among them, 44 references were about batch 
operation and 13 references were about continuous operation. The 
number of data sets for solid yield, fixed carbon, volatile matter, ash 
content and higher heating values were 419, 422, 422, 422 and 393, 
respectively. The complete set of collected data can be found in Table S1 
in the supplementary information. 

Table 1 
Summary of the number of references and datasets.  

Operation 
mode 

Number of 
references 

Char 
yield 

Fixed 
carbon 

Volatile 
matter 

Ash 
content 

Higher 
heating 
value 

Batch 44 350 349 349 349 340 
Continuous 13 69 73 73 73 53 
Total 57 419 422 422 422 393  
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2.2. Input variables and responses 

In slow pyrolysis, various factors are affecting the product yields and 
their chemical/physical properties. Based on the literature investiga-
tion, seven variables were selected as the input variables, which were 
divided into two categories: operation parameters, involving pyrolysis 
temperature (oC), residence time (min), and production capacity (g), 
and feedstock properties, such as the particle size (mm), fixed carbon 
(wt% dry basis (db)) and ash content (wt% db)). The production ca-
pacity was the amount of biomass processed per batch for batch oper-
ations and the feeding rate of biomass (in g/hr) for continuous 
operations. Heating rate and carries gas flow rate were not selected as 
input variables because more than 30 % of the selected references didn’t 
report these information. The volatile matter content of feedstock was 
not selected as it is dependent on the feedstock’s fixed carbon and ash 
contents. In the case of a range of particle size of the feedstock was re-
ported in a certain article, a mean value was calculated and taken as the 
reference data. The selected responses included char yield (wt% db), 
fixed carbon (wt% db), volatile matter (wt% db), ash content (wt% db), 
and HHV (MJ kg− 1) of the produced char. When no HHV but the 
elemental compositions were reported, the unified linear correlation 
(Eq.1) [24] was used to calculate the product’s HHV. The summary of 
the datasets is shown in Table 2, including the number of data points, 
minimum, maximum, mean, and standard deviation values of each 
variable. 

HHV (MJ Kg− 1) = 0.3491C + 1.1783H + 0.1005S − 0.1034O − 0.0151N

− 0.0211A
(1)  

Where C, H, S, O, N, and A are representing carbon (wt%), hydrogen (wt 
%), sulphur (wt%), oxygen (wt%), nitrogen (wt%) and ash content (wt% 
db), respectively. 

The histograms of the input variables and responses are shown in 
Figs. 1 and 2. The shape of the histograms indicated the most widely 
used operating conditions and their distributions of the literature ex-
periments. The histograms showed that most experiments were con-
ducted at pyrolysis temperatures of ca. 500 ◦C, solid residence times of 
ca. 60 min, production capacities of ca. 50 g, and particle sizes of ca. 3 
mm. It also indicated that most experiments were on an experimental 
scale as small production capacity was conducted. On the other hand, 
the histograms of the biomass compositions were only indicated the 
distributions from the literature studies as biomass was depended on the 
type of the biomass, its harvest time, and pre-treatment process. For 
example, algal biomass usually contained less than 10 wt% db of fixed 
carbon, but the fixed carbon of hazelnut shell could be between 
13.4–27.6 wt% db, which was mainly dependent on its harvest time. 
Whilst the produced char’s characteristics were depended on both 
operating conditions and composition of biomass, Fig. 2a–e showed the 
distribution and the highest counts of char yield (25− 35 wt% db), fixed 
carbon (60− 80 wt% db), volatile matter (5− 20 wt% db), ash (0− 5 wt% 

db), and HHV (27.5–28.5 MJ/kg). 

2.3. Regression analysis 

The relationship between the input variables and the responses was 
evaluated by multiple regressions using the software Design Expert 12. 
The lack-of-fit tests and model summary statistics for linear, linear with 
two-factor interaction (2FI), quadratic and cubic models were investi-
gated to choose the most suitable model. The selection criterion 
included model p-value, lack-of-fit p-value, adjusted coefficient of 
determination (R2) and predicted R2. The general form of the models is 
shown in Eq. 2–Eq.5 for linear, 2FI, quadratic and cubic models, 
respectively. 

y = a0 +
∑k

1
aixi + e (2)  

y = a0 +
∑k

i=1
aixi +

∑k

i=1

∑k

j
aij(i<j)xixj + e (3)  
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i=1

∑k

j
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2

+
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i=1

∑k

j

∑k

l
aijlxixjxl + e

(5) 

In the models, x1, x2, and xk are terms for the input variables, ai, aij,

aii, aijl are the coefficients of each term, and e is the residual of the 
models. For the input variables, Production capacity and Particle size, a 
logarithmic transformation of the raw data was carried out as the data 
for these two input variables covered large range. For the rest input 
variables, raw data was used in the regression analysis. The analysis of 
variance (ANOVA) for selected models was studied to obtain the 
mathematical relationship between the input variables and the re-
sponses. The significance of variables in the model was corrected based 
on p-values less than 0.05. To simplify the models, the automatic model 
selection feature in Design Expert was used to remove any terms with p- 
values greater than 0.05. 

2.4. Artificial neural network model 

An artificial neural network (ANN) is a mathematical model which 
analyses a large number of datasets and trains itself to recognise patterns 
between datasets. It then predicts the nonlinear relationships and cor-
relation between the input data and responses. As shown in Fig. 3, an 
ANN structure consists of three layers, input, hidden and output layers. 
The hidden layer contains several neurons connected to the input and 
target parameters by adjustable weighted linkages, and the transfer 

Table 2 
Descriptive statistics of input variable and responses.  

Variables Unit Count Min Max Mean Std. dev. 

Input 

Temperature oC 448 300 800 515.3 125.3 
Residence time min 448 1 180 34.2 29.4 
Production capacity g 448 1 30,000 950.6 3935.1 
Particle size mm 448 0.15 200 9.8 21.4 
Fixed carbon wt% (db) 448 0 27.8 15. 5.2 
Ash wt% (db) 448 0.2 38 6 5.8 

Response 

Char yield wt% (db) 419 11.2 59 32.5 8.5 
Fixed carbon wt% (db) 422 2.01 95.36 62.5 18.2 
Volatile matter wt% (db) 422 1.29 66.3 21.4 12.7 
Ash wt% (db) 422 0.6 67.7 15.1 13.8 
HHV MJ kg− 1 (db) 393 6.47 39.9 26.3 5.5 

*db = dry basis. 
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function in the hidden layer introduces the nonlinearity to the network. 
In this study, MATLAB was used to develop the ANN models to 

determine the relationship between the input variables and the re-
sponses. To build successful ANN models, the architectures of the ANN 
model had to be optimised, including the training algorithms, number of 
neurons, and transfer functions. The experimental datasets from the 
literature search were randomly divided into training, validation and 
testing. In the training phase, 70 % of the datasets were used, whilst the 
validation and testing phase used 15 % each. Large datasets for the 
training phase allowed the ANN model to be trained and recognised. The 
validation phase determined the reliability of the model, and the testing 
phase evaluated the outcome of the model. The input datasets were 
normalised into a specified range between -1 to 1 before incorporating 
into the network training to avoid numerical overflow due to excessively 
huge or small weights (Eq. 6): 

Np = 2
(
Ap − minAp

)

(maxAp − minAp)
− 1 (6)  

Where Np is the normalised parameter, Ap is the actual parameter, minAp 
is the minimum value of the actual parameter and maxAp is the 
maximum value of the actual parameter. Whilst the response datasets 
were unchanged to predict the actual results from the model. 

In MATLAB, twelve different training algorithms are available, 
including Levenberg-Marquardt (“trainlm”), Bayesian Regularization 
(“trainbr”), BFGS Quasi-newton (“trainbfg”), Resilient Backpropagation 
(“trainrp)), Scaled Conjugate Gradient (“trainscg”), Conjugate Gradient 
with Powell/Beale Restarts (“traincgb”), Fletcher-Powell Conjugate 
Gradient (“traincgf”), Polak-Ribiere Conjugate Gradient (“traincgp”), 
One Step Secant (“trainoss”), Variable Learning Rate Gradient Descent 
(“traingdx”), Gradient Descent with Momentum (“traindm”), and 
Gradient Descent (“traingd”). MATLAB codes were developed to deter-
mine which algorithm was the best for the model in terms of their R2 and 
low MSE values. During the optimisation of the training algorithms, the 
other parameters were kept constant, including 5 as the number of 
neurons in the hidden layer, tangent sigmoid (“tansig”) function as the 

Fig. 1. Histograms of the input variables. (a) pyrolysis temperature, (b) solid residence time, (c) production capacity, (d) particle size, (e) fixed carbon of feedstock, 
(f). ash of feedstock. 
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Fig. 2. Histograms of the responses. (a) char yield (wt%), (b) fixed carbon (wt%) in char, (c) volatile matter (wt%) in char, (d) ash content in char (%), (e) HHV 
of char. 

Fig. 3. The architecture of an artificial neural network.  
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transfer function and HHV as the response. 
After the most suitable training algorithm was determined, the 

number of neurons in the hidden layer was needed to decide. The 
numbers of hidden neurons in the hidden layer are needed to determine. 
If the numbers of hidden neurons selected are too less as compared with 
the complexity of the problem, underfitting might occur where the 
neurons are unable to detect signals on a complicated date. If excessive 
hidden neurons are used, overfitting will take place, and the general-
isation capability will be degraded. The number of neurons in 1–15 were 
evaluated for R2 and MSE values. Same as the optimisation of the 
training algorithms, the other parameters were kept constant, including 
Bayesian Regularization (“trainbr”) as the training algorithm, tangent 
sigmoid (“tansig”) function as the transfer function and HHV as the 
response. 

The transfer function in the hidden layer was also optimised using 
the same principle. Fifteen transfer functions were provided in MATLAB, 
including competitive transfer function (“compet”), Elliot sigmoid 
transfer function (“elliotsig”), positive hard limit transfer function 
(“hardlim), symmetric hard limit transfer function, (“hardlims”), loga-
rithmic sigmoid transfer function (“logsig”), inverse transfer function 
(“netinv”), positive linear transfer function (“poslin”), linear transfer 
function (“purelin”), radial basis transfer function (“radbas”), radial 
basis normalised transfer function (“radbasn”), positive saturating linear 
transfer function (“satlin”), symmetric saturating linear transfer func-
tion (“satlins”), soft max transfer function (“softmax”), symmetric sig-
moid transfer function (“tansig”), and triangular basis transfer function 
(“tribas”). The most suitable transfer function was determined when 
Bayesian Regularization (“trainbr”) was the training algorithm, 5 was 
the number of neurons in the hidden layer, and HHV was the response. 

After the architecture of the ANN model was optimised, the same 
parameters were applied to develop the models for all the responses, 
including char yield, char’s fixed carbon, volatile matter, ash content 
and HHV. All MATLAB codes are included in the supplementary 
information. 

3. Results and discussion 

3.1. Raw data analysis 

A correlation analysis between the input variables and responses was 
carried out. The Pearson’s correlation coefficients and the significance 
level (p-value) are shown in Table 3. High correlation coefficients (>0.5) 
existed between pyrolysis temperature and volatile matter of produced 
char, ash content of feedstock and fixed carbon, volatile matter of pro-
duced char, and HHV of produced char. The scatter plots of the pairs 
with high correlation coefficients are shown in Fig. 4. The analysis 
shows that the correlation coefficient of pyrolysis temperature between 
char yield and char’s volatile matter is -0.502 and -0.619, respectively, 
meaning as increasing pyrolysis temperature, the char yield and the 
volatile matter of the char will decrease. Whilst the ash content of 
biomass had a significant correlation with the fixed carbon (0.685), ash 
content (0.871), and HHV (-0.571) of produced char, meaning higher 
ash content in biomass could lead to higher ash content in char but lower 

fixed carbon and HHV of char. Sakulkit et al. studied the characteristics 
of pyrolysis products from oil palm trunk biomass [25]. They showed 
that, with increasing pyrolysis temperature from 400 ◦C to 500 ◦C, the 
volatile matter of the produced char decreased from 19.26 % to 14.15 wt 
%. Yang et al. indicated that the fixed carbon content rapidly increased 
from 63.18 wt% to 79.98 wt% when temperature increased from 300 ◦C 
to 500 ◦C. They also showed high temperature (>500 ◦C) favours the 
decomposition of alkaline metals of biomass to produce ash which de-
creases the fixed-carbon content of produced char [26]. 

3.2. Optimisation of MnLR model 

To determine the appropriate MnLR models and to represent the 
relationship between the input variables and responses, the R2, adjusted 
R2 and predicted R2 values were calculated for linear, 2FI, quadratic and 
cubic models, as shown in Table 4. The degrees of freedom of each 
model, i.e. the numbers of model coefficients, are also listed in the table. 
As expected, increased degrees of freedom in the models, from linear to 
cubic, led to higher R2 values. However, when adjusted R2 and predicted 
R2 values were evaluated, it shows that the cubic model has over-fitted 
the dataset and cannot predict unseen inputs because of its negative 
predicted R2 values. Therefore, the quadratic model, the one with the 
highest adjusted R2 and predicted R2 values, were selected for further 
optimisation. The quadratic models had a degree of freedom of 27. To 
simplify the models, any terms with p-values greater than 0.05 were 
removed. After the optimisation, the predicted R2 values were further 
improved, as shown in Table 4. 

The optimised models are listed in Eq. 7–11 for all five responses. 
The actual values and the predicted values using the optimised models 
are plotted in Fig. 5. 

Char yield = 64.4973 − 0.135679 × A − 0.00549408 × B + 0.463384

× C − 8.50056 × D + 0.532823 × E + 1.16931 × F

+ 0.0103204 × A × C + 0.060061 × B × C

− 0.00924671 × B × E − 0.315338 × C × F + 0.491981

× D × E + 7.62325 × 10− 5 × A2 − 1.21077 × C2

(7)  

FC = 12.8171 + 0.174061 × A + 0.0972342 × B + 7.05841 × C

− 2.39589 × D + 0.0192259 ∗ E − 4.17954 × F

+ 0.000630967 × A × B − 0.0201853 × A × C + 0.0226548

× A × D − 0.00267746 × A × F + 0.0584058 × B × D

− 0.0135689 × B × E + 0.0157766 × B × F + 0.414499 × C

× E − 0.651785 × D × E + 0.431926 × D × F + 0.0732588

× E × F − 9.20812 × 10(− 5) × A2 − 0.00203088 × B2

− 1.72217 × C2 + 0.0811854 × F2

(8)  

Table 3 
Pearson’s correlation coefficients between the input parameters and the responses. Significance between the parameters is indicated by * p < 0.05, ** p < 0.01, *** P <
0.001. ns indicates no significant correlation (p > 0.05). High correlation coefficients (<-0.5 or >0.5 are in bold).  

Response 

Input variable Char yield Fixed carbon Volatile matter Ash content HHV 

Pyrolysis temperature ¡0.5023*** 0.3901*** ¡0.6187*** 0.0541ns 0.1208** 
Residence time − 0.0597ns 0.1434*** − 0.1873*** − 0.0127ns − 0.0962ns 

Production capacity − 0.0185ns 0.0400ns 0.1193* − 0.1534** 0.0864ns 

Particle size − 0.0720ns 0.0559ns − 0.0657ns − 0.0376ns 0.0610ns 

Fixed carbon 0.0565 ns 0.4084*** − 0.1155** − 0.3968*** 0.4525*** 
Ash content 0.3884*** ¡0.6850*** 0.0409ns 0.8706*** ¡0.5710***  
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VM = 94.1817 − 0.210606 × A − 0.0806182 × B − 5.06399 × C

+ 5.05081 × D + 0.480784 × F − 0.858883 × D × F

+ 0.000137518 × A2 + 1.51123 × C2

(9)  

Ash = − 13.3307 + 0.0644936 × A + 0.013061 × B − 2.77813 × C

− 1.2763 × D − 0.323806 × E + 2.79003 × F − 0.000204887

× A × B + 0.00125605 × A × F − 0.0533454 × B × D

− 0.0115856 × B × F + 0.21633 × C × E + 0.30372 × C × F

− 0.0263193 × E × F − 5.07695 × 10− 5 × A2 + 0.00143485

× B2 − 0.0518208 × F2

(10)  

HHV = 19.5416 − 0.000701126 × A + 0.0367686 × B − 0.191607

× C − 2.47057 × D + 1.23483 × E − 1.186 × F + 9.82155

× 10− 5 × A × B + 0.00748975 × A × D − 0.045769 × B × C

+ 0.253446 × C × F − 0.0332786 × E2 + 0.0198405 × F2

(11)  

Where A, B, C, D, E and F are pyrolysis temperature (oC), residence time 
(min), the common logarithm of production capacity (g), the common 
logarithm of feedstock particle size (mm), fixed carbon (wt% db), and 
ash content (wt% db), respectively. The MnLR models showed poor 
performance for predicting char yield, volatile matter and HHV with low 
R2 values. It indicates that further improvement is required for accurate 
predictions. 

Fig. 4. Scatter plots of the pairs of input variables and responses with high correlation coefficients (>0.5). (a) char yield vs pyrolysis temperature, (b) char’s volatile 
matter vs pyrolysis temperature, (c) char’s fixed carbon vs feedstock’s ash content, (d) char’s ash content vs feedstock’s ash content, (e) char’s HHV vs feedstock’s 
ash content. 
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3.3. Optimisation of ANN model 

As summarised in Table 5, twelve training algorithms and their 
analysis results including the number of iterations, mean square error 
(MSE) and R2 values of training, validation, testing and overall are 
shown. A model with the lowest overall MSE and highest overall R2 

value is considered the best algorithm. Among all the training algo-
rithms from Table 5, “trainbr” had the lowest MSE overall of 8.4 and 
highest R2 overall of 0.703. Whilst “traincgp” was the second-best al-
gorithm with MSE overall of 10.3 and R2 overall of 0.657. A few liter-
atures of using “trainbr” algorithms for ANN model have been reviewed. 
Nasrudin et al. found “trainbr” was the best algorithm among eleven 
training algorithms in modelling microwave pyrolysis of biomass [27]. 
It indicated the “trainbr” algorithm exhibits the best performance in 
predicting the weight of output and the accuracy between actual and 
predicted output. Serrano et al. used “trainbr” for modelling gasification 
in fluidised bed [28]. It showed “trainbr” achieved the highest R2 of 0.94 
for gas yield. On the other hand, fewer literatures have been proposed 
“trainlm” and “trainbfg” were alternative algorithms. Antwi et al. 
compared “trainbfg” with other ten algorithms for estimation of biogas 
and methane yields [29]. It showed the “trainbfg” and “traincgp” were 
the best algorithms among eleven training algorithms with R2 of 0.987 
and 0.979 for biogas and methane yield, respectively. Sun et al. sug-
gested “trainlm” has an excellent performance in the prediction of py-
rolysis products from industrial waste biomass [23]. It discussed 
“trainlm” algorithm combining with sigmoid transfer function mini-
mised the MSE value and optimal the ANN model. Demuth et al. 
explained “trainbr” algorithm randomise with specified distribution 
variables for the weights and biases of the ANN network, then using 
statistical techniques to estimate the results [30]. It showed “trainbr” 
provides better estimation on multivariable models due to regularisation 
quality and early stopping of “trainbr” can ensure network to tolerate 
large iteration to reach its convergence. It also suggested “trainbr” works 
best when the dataset is normalised between -1 to 1. Therefore, “trainbr” 
algorithm was selected, and used as constant model variable for deter-
mine the optimum number of neurons and transfer function for this ANN 
model. 

As summarised in Table 6, the number of neurons ranged from 1–15. 
Their analysis results, including the number of iterations, mean square 
error (MSE) and R2 values of training, validation, testing and overall are 
shown. The optimum number of neurons for the model was determined 
by the lowest overall MSE and highest overall R2 value. Ten neurons in 
the hidden layer were the most suitable for the model, with the lowest 

MSE overall of 6.6 and the highest R2 overall of 0.781. Whilst nine 
neurons in the hidden layer were the second suitable for the model with 
an MSE overall of 6.8 and R2 overall of 0.773. Decreasing the number of 
neurons in the hidden layer resulted in higher MSE and lower R2 values. 
On the other hand, increasing the number of neurons in the hidden 
layer, the MSE and R2 overall values were very close to five neurons, but 
the R2 value of testing was reduced. Cheng et al. discussed the optimum 
number of hidden neurons was not determined by any formulae; it was 
determined by the MSE from different nodes within the range [31]. 
Therefore, ten neurons in the hidden layer were selected and were used 
as a constant model variable to determine the optimum training algo-
rithm and transfer function for this ANN model. 

As summarised in Table 7, fifteen transfer functions and their anal-
ysis results including number of iterations, mean square error (MSE) and 
R2 values of training, validation, testing and overall are shown. Among 
all the transfer function in Table 7, “tansig” was the best transfer func-
tion for the model with the lowest MSE overall of 6.7 and the highest R2 

overall of 0.776. Whilst “elliotsig” had the MSE overall of 8.1 and R2 

overall of 0.731. In this model, “tansig” transfer function was used in the 
hidden layer, and “purelin” was used in the output layer. Cakman et al. 
discussed the “tansig” in the first hidden layer and “purelin” in the 
second hidden layer increased the ability of the ANN model to determine 
for both linear and nonlinear relationships between the input on the 
target variables [32]. Zhong et al. compared six different activation 
function sets in modelling fast pyrolysis via fluidised-bed and found 
“tansig” function was suitable for both hidden and output layer [33]. 
Therefore, “tansig” function was selected in the hidden layer, and 
“purelin” was selected in the output layer. 

As summarised in Table 8, the response variables and their analysis 
results from ANN models including number of iterations, mean square 
error (MSE) and R2 values of training, validation, testing and overall are 
shown. The plots of the ANN training, validation and test can be found in 
the supplementary information as Figure S1-S5. The optimised model 
variables were used to obtain the results of the responses, including 
“trainbr” as training algorithm, ten neurons in a hidden layer, and 
“tansig” and “purelin” transfer function in hidden and output layers, 
respectively. To ensure the reliability of the R2 overall value, all the R2 

values of training, validation, and testing were achieved with less than 
maximum of 0.1 different between the values. The results showed that 
high R2 values were obtained for all response variables, including char 
yield (0.785), fixed carbon (0.855), volatile matter (0.752), ash (0.951), 
and HHV (0.784). The actual values and the predicted values using the 
ANN models are plotted in Fig. 6. The ANN models in the MATLAB script 

Table 4 
Model Summary Statistics of MnLR model.  

Response 

Model Char Yield Fixed carbon Volatile matter Ash HHV 

Linear 

DoF 6 6 6 6 6 
R2 0.4310 0.6467 0.4256 0.7818 0.4288 
Adjusted R2 0.4227 0.6416 0.4173 0.7787 0.4199 
Predicted R2 0.4088 0.6317 0.4038 0.7705 0.4015 

2FI 

DoF 21 21 21 21 21 
R2 0.5319 0.7156 05,598 0.8233 0.5223 
Adjusted R2 0.5072 0.7007 0.5367 0.8140 0.4953 
Predicted R2 0.4728 0.6564 0.4931 0.7795 0.4178 

Quadratic 

DoF 27 27 27 27 27 
R2 0.5746 0.7783 0.6242 0.8640 0.5926 
Adjusted R2 0.5452 0.7631 0.5984 0.8547 0.5625 
Predicted R2 0.5048 0.7356 0.5500 0.8355 0.4989 

Cubic 

DoF 82 82 82 82 82 
R2 0.7299 0.8597 0.7582 0.9223 0.7888 
Adjusted R2 0.6639 0.8258 0.6997 0.9035 0.7330 
Predicted R2 − 0.1017 0.6490 − 0.8481 0.5979 − 0.0664 

Optimised 

DoF 13 21 8 16 12 
R2 0.5579 0.7763 0.5709 0.8613 0.5728 
Adjusted R2 0.5437 0.7646 0.5626 0.8558 0.5594 
Predicted R2 0.5256 0.7444 0.5486 0.8420 0.5344  
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Fig. 5. Plots of the actual and predicted values obtained from the regression model: (a) char yield (wt%), (b) fixed carbon in char (wt% db), (c) volatile matter in char 
(wt% db), (d) ash content in char (wt% db) and (e) HHV of char (MJ kg− 1). 

Table 5 
Summary of training algorithm statistic (Tr: training, V: validation, T: test, O: overall).  

Training algorithm Number of iterations 
Mean square error (MSE) R2 

Tr V T O Tr V T O 

trainlm 63 10.9 13.3 11.3 11.3 0.638 0.630 0.569 0.624 
trainbr 117 8.4 12.1 8.4 8.9 0.730 0.593 0.706 0.703 
trainbfg 112 9.3 11.9 19.5 11.2 0.708 0.521 0.369 0.630 
trainrp 68 18.1 16.8 11.8 17.0 0.407 0.494 0.563 0.439 
trainscg 160 14.2 18.0 16.7 15.2 0.517 0.437 0.460 0.494 
traincgb 67 16.9 17.4 19.0 17.3 0.421 0.422 0.441 0.422 
traincgf 76 14.8 12.4 15.9 14.6 0.528 0.425 0.497 0.512 
traincgp 196 9.1 13.2 12.8 10.3 0.717 0.443 0.534 0.657 
trainoss 113 13.4 19.1 16.4 14.7 0.563 0.410 0.401 0.510 
traingdx 394 13.5 16.9 16.0 14.4 0.537 0.516 0.455 0.520 
traingdm 154 30.2 26.5 35.1 30.4 0.012 0.002 0.166 0.032 
traingd 50 1144.4 1201.2 1056.5 1139.7 0.013 0.035 0.081 0.024  
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format are included in the supplementary information, containing all 
the weights and bias for the networks. The accuracy of the prediction of 
the char yield is close to the ones (R2 = 0.8462, 0.8049 and 0.8548 for 
different sets of inputs) reported by Zhu et al. [3] using the random 
forest method. 

3.4. Comparison of ANN and MnLR models 

The model comparison was made by comparing the R2 overall value 
of the ANN and MnLR models. The MnLR model obtained the R2 overall 
values of char yield (0.5579), fixed carbon (0.7763), volatile matter 
(0.5709), ash (0.8613), HHV (0.5728) shown in Table 4. Whilst the ANN 
model determined the R2 overall values of char yield (0.785), fixed 
carbon (0.855), volatile matter (0.752), ash (0.951), and HHV (0.784) 
shown in Table 8. The results showed that all the response variables 
from the ANN model had higher R2 overall values than MnLR models. It 

can be concluded that ANN model has a higher ability to analyse and 
evaluate the datasets to achieve better results. Although the MnLR 
models had lower R2 values than ANN models, it indicated a similar 
relationship as ANN model, including ash had the highest R2 overall 
value among all the response variables, whilst fixed carbon had the 
second-highest R2 overall value. Some literature reviews that compared 
regression and ANN models were reviewed. Tosun et al. compared the 
linear regression and ANN models of biodiesel [34]. They showed that 
the ANN model with “trainlm” algorithm, “logsig” in the hidden layer 
and “purelin” in output layers obtained lower mean absolute percentage 
error (MAPE) values than linear regression. Kumar et al. also compared 
the linear regression and ANN models of soybean biodiesel yield [35]. It 
was concluded that ANN model with “trainlm” algorithm and “logsig” 
transfer function were more accurate than linear regression (R2 values 
were 0.9899 and 0.4198, respectively). However, Mesroghli et al. 
showed the results of US coal’s HHV estimation from ANN, and 

Table 6 
Summary of the number of neurons statistic (Tr: training, V: validation, T: test, O: overall).  

Number of neurons Number of iterations 
Mean square error (MSE) R2 

Tr V T O Tr V T O 

1 57 16.1 16.9 21.5 17.0 0.450 0.307 0.461 0.433 
2 62 14.3 14.1 17.7 14.8 0.541 0.587 0.224 0.507 
3 67 11.4 13.2 19.6 12.9 0.650 0.505 0.221 0.573 
4 74 8.3 10.8 17.2 10.0 0.722 0.609 0.519 0.665 
5 67 9.6 11.6 11.4 10.2 0.662 0.611 0.710 0.662 
6 77 8.2 10.9 9.9 8.9 0.719 0.668 0.710 0.705 
7 53 15.5 18.6 14.2 15.7 0.511 0.425 0.489 0.493 
8 81 7.3 14.4 9.1 8.6 0.757 0.596 0.643 0.712 
9 110 6.0 6.3 11.0 6.8 0.815 0.790 0.430 0.773 
10 108 4.6 14.9 7.4 6.6 0.829 0.623 0.788 0.781 
11 76 9.0 12.2 25.5 12.0 0.689 0.613 0.328 0.601 
12 72 7.0 11.6 10.6 8.2 0.797 0.449 0.562 0.730 
13 111 4.7 6.8 23.5 7.9 0.849 0.750 0.416 0.746 
14 99 6.8 10.8 5.4 7.2 0.781 0.610 0.823 0.761 
15 80 7.1 10.5 16.4 9.0 0.741 0.787 0.475 0.701  

Table 7 
Summary of transfer functions statistic (Tr: training, V: validation, T: test, O: overall).  

Transfer functions Number of iterations 
Mean square error (MSE) R2 

Tr V T O Tr V T O 

compet 11 25.7 33.4 40.1 29.0 0.056 0.008 0.018 0.037 
elliotsig 130 6.7 12.4 10.3 8.1 0.789 0.571 0.638 0.731 
hardlim 78 22.4 18.4 29.9 22.9 0.278 0.201 0.209 0.253 
hardlims 80 20.7 12.2 28.2 20.5 0.270 0.364 0.443 0.315 
logsig 75 8.1 7.8 17.1 9.4 0.740 0.714 0.464 0.689 
netinv 81 13.4 15.4 58.1 20.4 0.574 0.586 0.000 0.370 
poslin 64 12.4 12.4 15.9 12.9 0.611 0.537 0.437 0.571 
purelin 1000 17.4 17.5 23.7 18.4 0.412 0.488 0.411 0.426 
radbas 124 4.4 11.8 27.8 9.0 0.852 0.652 0.199 0.700 
radbasn 60 9.9 15.5 15.5 11.6 0.633 0.650 0.535 0.616 
satlin 60 13.1 7.6 12.5 12.2 0.594 0.664 0.551 0.594 
satlins 35 15.4 14.8 16.6 15.5 0.520 0.163 0.501 0.484 
softmax 72 8.8 11.0 10.5 9.4 0.748 0.509 0.478 0.687 
tansig 95 5.7 9.3 8.7 6.7 0.802 0.735 0.717 0.776 
tribas 122 10.7 12.5 11.4 11.1 0.648 0.630 0.561 0.632  

Table 8 
Summary of responses statistic of ANN model (Tr: training, V: validation, T: test, O: overall).  

Response Number of iterations 
Mean square error (MSE) R2 

Tr V T O Tr V T O 

Char yield 194 12.8 25.8 17.5 15.500 0.830 0.612 0.743 0.785 
Fixed carbon 128 42.3 58.8 64.3 48.1 0.879 0.782 0.809 0.855 
Volatile matter 123 37.1 49.3 43.7 39.9 0.770 0.720 0.697 0.752 
Ash 144 5.0 20.2 18.4 9.3 0.974 0.889 0.900 0.951 
HHV 115 6.5 6.9 6 6.5 0.764 0.847 0.751 0.784  
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regression did not have much different [36]. They suggested that using 
common and understood techniques as regression was better than using 
a more complicated method as ANN. 

4. Conclusions 

In this study, the relationship between the compositions of ligno-
cellulosic biomass and operating parameters for slow pyrolysis and 
produced char’s characteristics were successfully carried out based on a 
modelling work. Six input variables, including temperature, residence 
time, production capacity, particle diameter, fixed carbon and ash, and 
five response variables including char yield, fixed carbon, volatile 
matter, ash, and HHV were evaluated by using an artificial neuron 
network (MATLAB) and multiple nonlinear regression models (Design 
Expert 12). A total of 422 literature datasets were searched and nor-
malised in the range of -1 to 1 for ANN model analysation. High corre-
lation results (>0.5) existed between pyrolysis temperature and volatile 

matter of produced char (-0.502), ash content of feedstock and fixed 
carbon (-0.619), ash content (0.871) and HHV (-0.571) of produced char 
were analysed by the ANN model. Model optimisation and comparison 
were carried in both models. The determination coefficient R2 was used 
to compare the results and determine the accuracy of the models. All 
twelve training algorithms, neurons ranged from 1 to 15, and fifteen 
transfer functions were evaluated for the ANN model. The results 
showed the most suitable model parameters for the ANN model were 
“trainbr” training algorithm, ten neurons in the hidden layer, and 
“tansig” and “purelin” transfer functions in hidden and output layers, 
respectively. Then the optimised model parameters for ANN were used 
to determine the results of the response variables. The results showed 
high R2 for all responses, including char yield (R2 = 0.785), fixed carbon 
(R2 = 0.855), volatile matter (R2 = 0.752), ash (R2 = 0.951), and HHV 
(R2 = 0.784). Whilst four models were compared in the MnLR model, 
and it was shown that the quadratic models had the highest R2, adjusted 
R2, and predicted R2 among all the models. The quadratic models were 

Fig. 6. Plots of the actual and predicted values obtained from ANN model: (a) char yield (wt%), (b) fixed carbon in char (wt% db), (c) volatile matter in char (wt% 
db), (d) ash content in char (wt% db) and (e) HHV of char (MJ kg− 1). 
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further optimised by eliminating any terms with p-values greater than 
0.05, and the optimised equations for MnLR were achieved. The opti-
mised MnLR model results showed a good prediction ability of char yield 
(R2 = 0.5579), fixed carbon (R2 = 0.7763), volatile matter (R2 =

0.5709), ash (R2 = 0.8613), and HHV (R2 = 0.5728). Among all the 
results obtained from ANN and MnLR models, it can be concluded that 
ANN models had higher accuracy than MnLR models in predicting the 
relationship between input and response variables. The models devel-
oped in the study can be used to estimate and optimise the char pro-
duction and quality by slow pyrolysis of biomass. 
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