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“Saving lives or harming the healthy?” Overuse
and fluctuations in routine medical screening
Özge Karanfila,b* and John Stermanc

Abstract

Tests to screen for certain diseases—for example, thyroid cancer screening, screening mammog-
raphy, and screening of high blood pressure for hypertension—are increasingly common in
medical practice. However, guidelines for routine screening are contentious for many disorders
and often fluctuate over time. Some tests are over- or underused compared to available evidence
that justifies their use, with clinical practice persistently deviating from evidence-based guide-
lines. Here we develop an integrated, broad boundary feedback theory and formal model to
explain the dynamics of routine population screening including fluctuations in policy-decision
thresholds and the expansion of selection criteria which may lead to inappropriate use. We pre-
sent a behaviorally realistic, boundedly rational model of detection and selection for medical
screening that explains the potential of endogenous oscillations in practice guidelines as
decision-makers—including epidemiologists, clinicians, and patients, or policymakers from
guideline issuing organizations, perceive harms and benefits from potential outcomes and make
trade-offs between sensitivity and specificity by altering the existing guidelines and actual prac-
tice. The model endogenously generates fluctuations in screening indications, test thresholds,
test efficiency, and the target screening population, leading to long periods during which prac-
tice guidelines are suboptimal even if the underlying evidence base is constant. We use cancer
screening as a motivating example, but the model is generic with a wide range of potential appli-
cations for important managerial problems in medical contexts, such as screening for hyperten-
sion, hypercholesterolemia, autism spectrum disorder, Alzheimer’s disease, and related
dementia. It also applies to other managerial problems in nonmedical contexts, such as airport
screening, background checks, tax audits, automotive emission tests, contentious jurisdiction, or
to consumers of other kinds of information who need to make a decision—on behalf of an indi-
vidual, or for the whole population.
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Introduction

Practice guidelines are developed for various reasons, including the emer-
gence of new, potentially practice-changing scientific evidence or a per-
ceived need for guidance in times of uncertainty. Tests to screen for certain
disorders, for example thyroid cancer screening or screening of high blood
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pressure for hypertension, are increasingly common in medical practice.
There is universal agreement that their guidelines should be based on the
best available scientific evidence. The classical approach to setting
evidence-based guidelines is based on the fundamental trade-off between
Type I and Type II errors, in which policymakers seek the optimal balance
between sensitivity (and thus the risk of false positives) and specificity (and
thus the risk of false negatives), given the costs and benefits of different
outcomes.i

However, guidelines for routine screening are contentious for many disor-
ders and often fluctuate over time. Some tests are over- or underused com-
pared to available evidence that justifies their use, while clinical practice
deviates from evidence-based guidelines. Over the last few decades, the
selection and detection criteria for screening and disease definitions for sev-
eral important disorders have changed significantly, including biomarker
thresholds dividing positive from negative test results and the recommended
ages for routine screening. Major health organizations have recommended
changes in several common disease definitions, often resulting in the expan-
sion of the criteria for screening, diagnosis, and treatment, leading to
increases in reported disease incidence and prevalence, which justify addi-
tional treatment or immediate action (Croswell et al., 2010; Esserman
et al., 2014; Hoffman and Cooper, 2012).
A good example of a recent controversy is changes in the traditional defi-

nition of hypertension. In 2017, the American College of Cardiology (ACC)
and the American Heart Association (AHA) revised the guidelines for man-
agement of high blood pressure, adding a new category: Stage 1 hypertension,
previously termed as “prehypertension.” Under this definition (which
decreased the systolic blood pressure reading from 140 to 130 mmHg), the
number of U.S. adults with the condition increased from 72 to 103 million,
or from 32 percent to 46 percent, affecting nearly half of the adult population
(Bakris and Sorrentino, 2018). Around the same time, the National Institute
on Aging (NIA) commissioned a study from the National Academy of Sci-
ences (NAS): “Preventing Cognitive Decline and Dementia: A Way Forward”
to suggest three main interventions to delay or slow age-related cognitive
decline, one of them being intensive treatment of blood pressure (NAP,
2017). A recently published JAMA editorial offers additional support for
intensive treatment of blood pressure in reducing the risk of developing mild
cognitive impairment, by shooting for a target number of 120 or lower (Yaffe,
2019), a further departure from the traditional guidelines that targeted 140 or
lower.

iSensitivity” is a test’s ability to correctly identify the truly positive cases, defined as the fraction of true cases
yielding a positive test result. “Specificity” is a test’s ability to correctly identify the truly negative cases,
defined as the fraction of healthy individuals whose test result is negative.
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These trends have important repercussions in aging societies where efforts
to prevent cognitive decline is increasing (Hellmuth et al., 2019) and of par-
ticular concern for cancer screening: based on 2013–15 data, 38.4 percent of
Americans will be diagnosed with cancer at some point during their lifetime
(NCI Cancer Statistics, 2018).

Despite the importance of “getting it right,” clinical practice guidelines
(CPG’s) for many diseases differ among different stakeholders (epidemiolo-
gists, clinicians, patients, and patient advocacy groups), including the selec-
tion criteria for routine screening such as the recommended starting age and
the threshold in test results (e.g. fasting glucose) indicating referral for
biopsy or treatment, potentially increasing use of medical care. Guidelines
for diagnosis and indications for treatment for hypercholesterolemia, hyper-
tension, thyroid cancer, prostate specific antigen (PSA) testing, mammogra-
phy, routine pelvic exam, and neurodegenerative diseases to name just a
few, vary substantially across the United States, sparking confusion and con-
troversy for the public (Belluck, 2013; Pollack, 2013; Rabin, 2009, 2014;).
See Table 1 for a summary of some recent changes in screening indications
for some major conditions. This puts potential excessive testing at scale, call-
ing for transparency in the regulatory capture and algorithms used to define
these thresholds (Bakris and Sorrentino, 2018; Mandl and Manrai, 2019;
Schwartz and Woloshin, 2019; Welch, 2017).

To illustrate a detailed example, Figure 1 shows changes in the guidelines
for routine PSA testing in the United States promulgated by the U.S. Preventive
Services Task Force (USPSTF), the American Cancer Society (ACS), the Ameri-
can Urological Association (AUA), and the National Comprehensive Cancer
Network (NCCN), with respect to the recommended starting age. Only the ACS
guidelines remain constant over the last few decades, though they switched to
shared decision-making (SDM) after 2010; the other guidelines fluctuate. Note
also that the USPSTF, an independent scientific volunteer panel of 16 members
who are charged with evaluating the scientific evidence and independent of
specialty groups such as the AUA and others, concluded that the evidence did
not justify routine PSA screening in 2012 for men of all ages (Moyer, 2012;
USPSTF, 2018). Some believe that their recommendations went too far, and
they criticized their approach (e.g. Schröder, 2011; Wilt et al., 2014). Growing
concerns about their recommendations led to the USPSTF Transparency and
Accountability act (Blackburn M. H.R.1151 - 114th Congress (2015–2016).
USPSTF issued a statement in 2017 recommending to inform men ages
55–69 years about potential benefits and harms indicating SDM. Recent recom-
mendations suggest SDM and no screening for men over 70 (USPSTF, 2018). A
draft version of this recommendation statement was posted for public comment
on the USPSTF website from April 11 to May 8, 2017.

Evidence-based guidelines are often not followed by clinicians and patients,
with significant overscreening for some tests and underscreening for others:
practice often does not follow the evidence. For example, prostate screening
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Table 1. Variation in
clinical practice
guidelines (CPGs) Change in CPG

Direction of Change in Breadth
Selection Criteria News Coverage

Blood Cholesterol (2018) Broadening; bad cholesterol
levels
Narrowing; doctors should not
put most people on cholesterol-
lowering medications like
statins based on cholesterol
levels alone
Broadening…

New Cholesterol Guidelines
Abandon LDL Targets (Riordan,
2013)
Don’t Give More Patients
Statins (Abramson and
Redberg, 2013)
Do Latest US Guidelines
Bypass, or Spare, Millions
From Statins? (Wendling. 2017)
New AHA/ACC Cholesterol
Treatment Guideline Expands
Role of LDL Targets (Stiles,
2018)
Cholesterol targets are back!
(Bhatt, 2018)

Hypertension (2017) Broadening the breadth
selection criteria
Narrowing the breadth
selection criteria
Broadening, prehypertension
became Stage 1 Htn

Hypertension Guide May Affect
7.4 Million (Kolata, 2013)
Hypertension Guidelines Can
Be Eased, Panel Says (Kolata,
2013)
Don’t Let New Blood Pressure
Guidelines Raise Yours
(Welch, 2017)
Why New Blood Pressure
Guidelines Could Lead to Harm
(Carroll, 2017)

Screening Mammography
(2016)

Broadening; initiate
mammograms at 40
Narrowing, especially for
women in their 40s and 70s

New Guidelines on Breast
Cancer Draw Opposition
(Rabin, 2009)
Panel Urges Mammograms at
50, Not 40 (Kolata, 2009)
Start mammograms at age 40
not 50 (Change.org; 2020)

Prostate Screening (2018) Broadening; screen men over
50,
Narrowing; do not screen men
of any age
Broadening; screen men
between 55 and 69 selectively

Deciphering the Results of a
Prostate Test (Brody, 2007)
Prostate Screening Guidelines
are Loosened (Pollack, 2013)
Prostate Cancer Screening Still
Not Recommended for All
(Parker-Pope, 2014)
New Study Offers Support for
Prostate Testing (Rabin, 2017)

Routine Pelvic Exam
(2019)

Broadening: pelvic exam
suggested for women
Narrowing the breadth
selection criteria

Guideline Calls Routine Pelvic
Exams Unnecessary
(Rabin, 2014)
Many young women get
unnecessary pelvic exams
(Rapaport, 2020)
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with less benefits is more common among men in the United States than all
types of colorectal screening (fecal occult blood testing, flexible sigmoidos-
copy, or colonoscopy) with well-established mortality benefit (Sirovich
et al., 2003). Here we develop a dynamic hypothesis to formalize the policy-
formation process for practice guidelines and explain the problem of endoge-
nous cycles and expansion of selection criteria in population screening. Our
theory explains inappropriate use and oscillations in screening indications
and the proposed formal model endogenously generates fluctuations in indi-
cations even when the underlying evidence base were to stay constant.

In medicine, it is known that evaluations may affect both adoption and
patient selection (i.e. extent of use) (Fineberg, 1985). Homer’s (1987)
approach to model diffusion of medical technologies uses this principle,
which has parallels to our work of modeling the formation and dissemina-
tion/adoption of CPGs. His model is particularly useful for analyzing evolv-
ing technologies, where both technology’s acceptance and its extent of use
are subject to change over time as a result of new performance-related infor-
mation, where performance itself is affected by changes in technology or its
application.

We argue that variations in screening (policy) thresholds may also arise
not from changes in the benefits and harms environment of screening such
as technological advances, but from the interaction of delays between

Fig 1. Recommended
PSA test starting age for
asymptomatic men (SDM:
shared decision-making).
[Color figure can be
viewed at
wileyonlinelibrary.com]
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generating and assimilating scientific evidence with boundedly rational
decision-making, including biases in judgment and decision-making arising
from widely used heuristics. This is in line with Hammonds cognitive con-
tinuum theory which states “quasirationality” as an important middle gro-
und between intuition and analysis. Accordingly, cognitive performance is
dictated by the match between task properties and mode of cognition and
that there is an oscillation between these two (Hammond, 2007). We develop
a stylized model that is realistic enough to replicate the fluctuations in prac-
tice guidelines for, and overuse of, important medical screening tests such as
mammography and PSA testing, yet generic enough to be adapted to other
medical contexts, such as Alzheimer’s screening, prenatal screening, early
screening for autism or thyroid screening, as well as nonmedical settings
such as airport screening, applicant background checks, or tax audits. We
use a mix of quantitative and qualitative methods including semistructured
expert interviews, a medical literature search, and empirical data collection
on how screening criteria have evolved over time to formulate a system
dynamics (SD) model for population screening (Forrester, 1961;
Sterman, 2000).
We first review the theory relevant to judgment and decision-making and

setting decision thresholds in the presence of Type I and Type II errors, then
present the model structure, parametric assumptions, results, and sensitivity
analysis. We conclude with implications for theory and practice and discus-
sion of model limitations with potential extensions.

Background

We draw on a large literature in the social sciences, judgment and decision-
making, psychology, marketing research, political sciences, and finally pub-
lic health and medicine in which decision-makers must set a threshold for
classifying a condition as positive or negative. Swets played a key role in
adapting signal detection theory and specifically the Receiver Operating
Characteristic (ROC) curve to the psychology of perception (Green and
Swets, 1966; Swets, 1964). He was the first to describe shifting and cycling
decision thresholds. In medicine, Pauker and Kassirer (1980) introduced the
concept of the “therapeutic threshold”—a probability of disease that consti-
tutes a point of indifference between treating and not treating. Later on in
political science, Schlesinger (1986) proposed the concept of “regular oscil-
lations” to describe cyclical variations in dominant political parties in his
book, The Cycles of American History.
In his famous book on human judgment and decision-making, Ham-

mond (1996) attempted to understand the policy-formation process. He pro-
posed that any policy problem involving irreducible uncertainty has the
potential for dual error, and policy thresholds may oscillate over time due to
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opposing pressures coming from constituencies representing those treated
unfairly. Accordingly, any imperfect test that employs a threshold would
lead to some error and yield an irreducible uncertainty/inevitable error/
unavoidable injustice to some constituency, namely, the false positives
(incorrect rejection of a true null hypothesis) and the false negatives (incor-
rectly retaining a false null hypothesis). High, and especially salient and
consequential, realizations of each type of error would lead to pressure on
policymakers to move the threshold to reduce the error, but at the cost of
increasing the other error type, eventually creating a counter pressure and
causing cycling of that decision threshold over time. He argued that there
are oscillations in public and professional attitudes with implicit policy
thresholds and that those cycles would last about 30 years across decision
domains (Hammond, 1996), concluding “If such oscillations can be shown
to exist, and if they can be shown to have a definite period … then we have
at hand not only a means for predicting our future political climate far in
advance, but an important phenomenon that strongly invites, indeed,
demands, analysis and interpretation.” In his last book entitled Beyond
Rationality: The Search for Wisdom in a Troubled Time, published at age
92, he characterized movement along the cognitive continuum as oscillatory
or alternating between intuition and analysis, and the key to wisdom lies in
being able to match modes of cognition to properties of the task
(Hammond, 2007).

A related line of research suggests that physicians’ decision thresholds
may vary over time. Stewart and Mumpower (2004) and Swets et al., (2000)
and Stewart et al. (2012) document wide variation among radiologists’ deci-
sions regarding the interpretation of mammograms and the appropriate
trade-off between false positives and false negatives. This conflicts with the
view that clinicians’ judgmental accuracy is fixed and suggests that both the
thresholds suggested by formal guidelines and physicians’ actual decision
thresholds might fluctuate. We know that this is true for PSA screening and
for its formal versus actual biopsy thresholds (Gulati et al., 2010).

Stewart and Mumpower (2004) describe different domains of decision-
making about mammography screening, focusing on the decisions made by
radiologists in their practice, and the variation in radiologists’ decisions.
These domains include the decisions by women and their doctors to obtain
screening, decisions by radiologists to recommend biopsy, and decisions of
policymakers regarding criteria for routine screening.

In the system dynamics domain, Weaver and Richardson (2006) developed
a model based on the policy threshold cycling theory of Hammond and other
scholars (Hammond, 1996; Schlesinger, 1986; Swets, 1992). They first pre-
sent a simplified theory of Hammond’s initial insight and then develop three
alternative models: one with delays in policy-maker responsiveness; one
with shifts in stakeholders’ constituencies in response to recent errors; and
one with integral control representing the historical dissatisfaction of
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competing constituencies. More recently, Sheldrick et al., (2016) developed
an SD model to explore how clinicians referral decisions may be influenced
by changes in context, using developmental and behavioral screening as a
case study, and Lyon et al., (2016) modeled the impact of school-based uni-
versal depression screening on service capacity needs.
Some of the other SD cancer-screening modeling studies include Kivuti-

Bitok et al. (2014) who developed a model for cervical cancer vaccination
and screening interventions in Kenya; Palma et al. (2016) who replicated the
Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) for
serum PSA screening for prostate cancer; and Fett (2001) who replicated the
Swedish two-county trial of mammographic screening for breast cancer,
which are all population-level models. For a more detailed discussion on
medical screening models in SD, Darabi and Hosseinichimeh (2020) provide
an extensive picture of the field.
Our model differs from these models as it is not at population level in the

sense that the real U.S. male population and their screening-related metrics
are replicated here in detail, but instead that populations’s collective
response to changing guidelines, demographics, and the policy thresholds
are modeled in a stylized way together with a realistic screening test and
parameters, calibrated for the PSA test for prostate cancer.

Screening Model Overview

We begin with the minimal feedback structure required to model threshold
determination and resulting impact on test sensitivity and specificity (the
evidence-based “core model”). We then gradually expand the model bound-
ary to include additional feedbacks including the interpretation and imple-
mentation of formal guidelines by clinicians and patients, testing the model
structure and its behavior throughout. Karanfil (2016) and Karanfil
et al. (2017) provides an extensive discussion for the rationale and history of
the policy-formation process for the population screening problem, mainly
in the U.S. context, by keeping a comparative perspective between the
United States and Europe and between PSA and other medical-testing
problems.
Figure 2 shows the boundary of the full model, including the evaluation of

evidence, benefits, and harms resulting from actual clinical practice and
patient outcomes and delays in assessing and responding to these outcomes.
The model boundary emerged with respect to the problem of concern, and at
the core, it includes the endogenous “system variables” which include selec-
tion and detection criteria, harms and benefits of screening, disease preva-
lence in the target screening population, and the test diagnostics themselves.
These interact to create broad boundary feedbacks that give rise to the (prob-
lematic) behavior and condition the adoption of and adherence to CPG’s and
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hence are modeled explicitly. Exogenous variables are the parameters and
other time-series information that are used as an external input for the simu-
lation, and other nonrelevant concepts are left intentionally outside of the
model boundary. Since screening practice in the United States started in the
1980s, the time horizon of the model is roughly selected as 1980–2080 to
show the time scale of the screening problem, which is in line with Ham-
monds suggested cycles in professional attitudes.

Classical Approach to Setting Evidence-Based Guidelines

At the core of all evidence-based guidelines, there is a decision-theoretic
framework which is the first and fundamental step in all types of screening,
including medical screening. Ideally, this first step relies only on evidence
about the benefits and harms to patients from screening and potential
follow-up. For routine medical screening, evidence includes the available
options (e.g. screening or not screening), reports on the likelihoods of, and
the benefits and harms associated with, the possible outcomes including true
positives (e.g. cases diagnosed, lives extended), false positives (e.g. harms
from unnecessary biopsy, anxiety, and consequent treatment), true nega-
tives, and false negatives (e.g. harms from undiagnosed and untreated dis-
ease). Benefit and harm calculations should consider various potential
impacts on patients including morbidity, mortality, and other formal

Fig 2. Model boundary
diagram.
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measures of disease burden such as lost quality or disability-adjusted life
years (QALYs or DALYs), including the impacts arising from any follow-up
treatments, along with the emotional costs of anxiety created by testing and
its outcomes, or alternatively, positive responses to coping information
(Kahn and Luce, 2003).
The classical approach to setting guidelines for screening is to seek an

evidence-based balance between the sensitivity and specificity of a diag-
nostic test (Figure 3). However, the distribution of PSA levels for the D+

and D− populations overlap inevitably; various degrees of overlap are
typical in many diagnostic settings. Hence, for any threshold, there will
be nonzero rates of Type I or Type II error (or both), with higher errors
as the overlap between the D+ and D−populations increases. PSA was
first identified in 1970 as a biomarker of the prostate gland (Ablin
et al., 1970).
The Receiver Operating Characteristic (ROC) curve is the most commonly

used tool to evaluate the diagnostic performance of a screening test
(Metz, 1978) and can also be used to compare the diagnostic performance of
two or more different tests (Griner et al., 1981). In a ROC curve, the True
Positive rate, TPR = Sensitivity, is plotted against the False Positive rate,
FPR = 1 – Specificity. For any test, the higher the sensitivity (fraction of true
cases detected by the test), the higher the rate of false positives.

Fig 3. Decision matrix:
potential results of a
screening test (T+test
positive, D+disease
present). [Color figure can
be viewed at
wileyonlinelibrary.com]
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Consider two groups in a population, one with a specific condition or
disease (denoted D+) and the other without the disease (D—). Diagnostic
tests are typically imperfect. For example, PSA testing for prostate cancer
measures the level of PSA in the blood, with levels above a certain thresh-
old taken to indicate a positive result (T+) for possible cancer (leading to
biopsy and possibly treatment) and levels below the threshold taken to
indicate a negative result (T−). Deciding on the threshold for an individual
is different than the one for the population and depends on individual risk
factors such as age and family history. Potential long-term benefits and
risks of screening differ greatly in younger versus older people. In addition,
the optimal threshold is shaped by individuals attitudes about available
treatments and consequences, which, in turn, can be affected by education
levels, cultural norms, and other socioeconomic factors (Cutler and Lleras-
Muney, 2010).

Model of Practice Guidelines

Figure 4 provides an overview of the full model, including the policy struc-
ture for development of evidence-based screening (Core Model) and the

Fig 4. Overview of full
model showing the key
feedback structures.
[Color figure can be
viewed at
wileyonlinelibrary.com]
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policy structure for guidelines in use (Model of Actual Practice). The two
critical state variables are the Recommended Starting Age (R) and the test
Threshold Value (V). Test values above V indicate a positive result (the pos-
sibility of disease); values below V indicate a negative result (no disease).
The optimal values are not known but must be discovered over time. The
threshold and recommended age each adjust in response to the reported
ratio of benefits to harms, using a hill-climbing search procedure
(Sterman, 2000).
Hill climbing is a plausible heuristic to adjust V when its optimal value is

unknown: the guideline is gradually changed in the direction that is per-
ceived to improve performance, which is in line with the heuristic suggested
in Hammond (2007). Balancing feedback B1 adjusts the actual threshold
V toward the indicated threshold value V *, the threshold implied by the
reported Harm-to-Benefit Ratio (HBR) and, possibly, other external pressures
arising from, e.g. medical and treatment providers and patient advocacy
groups. The V * is anchored on the current V, so that the threshold falls
(increasing sensitivity) as long as the Reported HBR, or RHBR is favorable
and rises (decreasing sensitivity) as long as the RBHR is unfavorable, creat-
ing the reinforcing threshold-adaptation feedback R1. As long as the net
effect of the pressures on the threshold goal causes V* to exceed V, the
threshold will grow; otherwise it will decay. The formulation for the changes
in R is analogous.
Evidence documenting harms and benefits should lead to convergence to

the appropriate threshold V and starting age R, proxies for breath-selection
criteria. Balancing feedback B2 provides evidence conditioning decisions
about increasing or decreasing the threshold based on the RHBR. As the
threshold rises, specificity rises (fewer false positives), but sensitivity falls
(more false negatives). The HBR will adjust, leading to further changes in the
threshold. The threshold will equilibrate at the level that yields the optimal
HBR, which may vary based on context.
However, gathering, publishing, and responding to scientific evidence

takes time. There are two major time delays: the delay in collecting, evaluat-
ing, and reporting evidence on the harms and benefits, denoted the HBR
Translation Delay (λt),and the delay in public’s response to changing recom-
mendations, denoted the Public Perception Delay, (λp). In addition, it takes
time for the V and R to adjust given a gap between the indicated and actual
values, denoted the Time to Adjust T (τV) and Time to Adjust R (τR),
respectively.
Formally, the threshold value, V, adjusts toward the indicated value, V*,

over the threshold-adjustment time, τV. The indicated threshold V* is
anchored on the current value and then adjusted by a function of the RHBR
and a bias, αV. The bias captures possible external pressures for higher or
lower thresholds that may arise from patient advocacy groups, payers, the
public, or other interest groups:

Overuse and Fluctuations in Routine Medical Screening 305

© 2020 System Dynamics Society
DOI: 10.1002/sdr



dV
dt

=
V�−Vð Þ
τV

(1)

V� = f V RHBRð ÞαVV : (2)

Here we treat the bias αV as a constant. The adjustment to V* arising from
evidence about the harm-benefit ratio is an increasing function of RHBR, the
reported HBR, here formulated as a constant elasticity with value βv, and
where the HBRref is the reference, or the optimal level of HBR, chosen as
1. In real life, the optimal level of HBR can take different values depending
on the costs we put on potential harms and benefits for that disease.

f V RHBRð Þ=1+ βV RHBR−HBRref
� �

;βV >0: (3)

The RHBR lags the actual value based on the current actual test threshold
due to the delays in carrying out, evaluating, and publishing data on harms
and benefits. Thus:

RHBR=L HBR,λtð Þ, (4)

where L is the lag operator, with mean lag λt.Because the evidence collection
and reporting process has multiple stages, we use a third-order Erlang lag.
The HBR aggregates the evidence on the harms and benefits of routine
screening. Possible benefits include treating true positives to prevent cancer
death or increase the patient’s quality of life. Possible harms of screening
include failing to treat false negatives and erroneously treating false posi-
tives. Harms can also include anxiety, distress, and other psychological
responses associated with the test and with false positive and false negative
results, unnecessary follow-up testing, and overdiagnosis (finding cases that
would not have resulted in clinically significant disease in the patient’s life-
time), as described in an interview with a policy maker, a former member of
a guideline committee:

[Benefits are] saving lives, improving quality of life.…Potential harms? Well
you have the harms of screening itself, so the screening test may be expensive
or painful or difficult, and then you have the follow up of the false positives,
which may be expensive, difficult, painful, and anxiety producing. So that’s all
about the test. Now once you have a positive test, a positive screen, you still
may have harms because of the treatment.... [I]f they are false positives they can
only get harm; they can’t get benefit. If they are true positives, they can get ben-
efit, but they can also get harm. (Policy Maker, Academic)

The harm-to-benefit ratio is defined as:
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HBR=H=B, (5)

where H and B are harms and benefits. Harms and benefits, in turn, are the
sum of the harms and benefits associated with each of the four possible com-
binations of test outcomes:

H =
X

T ,D
hT ,D pTD

� �
pD (6)

B=
X

T,D
bT,D pTD

� �
pD (7)

T� T + ,T −f g;D� D + ,D−f g,

where h and b are the harms and benefits for an individual associated with
each of the four possible test outcomes; pT j D is the probability of each test
outcome (positive, T+, or negative, T−), conditioned the true disease state,
positive, D+, or negative, D—; and pD is the probability of each disease state.
We choose values for h and b such that true positive and true negative
results yield net benefit, while false positive and false negative results yield
net harm.
The probability of each test outcome conditional on the true disease state

depends on the distribution of test values for each disease state, as explained
above. For PSA screening, the distribution of PSA test values for the D+ and
D− populations are reasonably approximated by a log-normal distribution
(Karanfil, 2016):

True Positive Rate,TPR= pT +

�
D +j Þ=1−NCDF ln Vð Þ−μD +ð Þ= 2σD +ð Þ0:5� �

, (8)

False Positive Rate,FPR= ðpT + D−j Þ=1−NCDF
ln Vð Þ−μD –

2σD –

0:5� �
, (9)

where NCDF is the cumulative density function for the normal distribution,
and μDand σDare the location and scale parameters for the lognormal distri-
bution (conditioned on real disease state D,D+, or D−).
The other two test outcomes, the true negative and false negative rates, are

True Negative Rate,TNR= ðpT – D−j Þ=1−FPR, (10)

False Negative Rate,FNR= ðpT – D +j Þ=1−TPR: (11)

The recommended starting age for screening (R) determines the fraction of
the population considered to be appropriate candidates for routing screening.
Just as the appropriate threshold for a positive test is not known but found
over time through a search procedure in response to the harm-to-benefit ratio,
the R is unknown and modeled using the same hill-climbing structure.
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dR
dt

=
R�−Rð Þ
τR

, (12)

R� = f R RHBRð ÞαRRact , (13)

Ract =L R,λp
� �

, (14)

f R RHBRð Þ=1+ βR RHBR−HBRð Þ;βR >0: (15)

Perception and implementation delays between the recommended and the
actual starting age and the recommendations themselves vary between insti-
tutions within the United States. In this model, we assume only one set of
guidelines, which is perfectly followed by the public with a time delay,
hence the public’s weight is 1.

There are two factors that motivate the change in breadth of selection
and detection criteria, or the breadth of indications. First, as radiologists
and practitioners adapt to new technologies that enable earlier detection of
cancer, policymakers will tend to expand the criteria to include those
patients for whom the inclusion appears to make an effective screening
possible. Second, if benefit-and-harm evaluations reveal that the screening
test’s perceived benefits are lower than desired, this will cause
policymakers, and consequently medical practitioners, to gradually become
more selective in their screening target population; that is, they will narrow
the selection criteria in order to improve future evaluations. The R2 loop
“actual practice priming” represents this inclusion drive for the screened
population, while the B4 loop represents the change of direction for the
selection criteria based on evaluation of screening harm and benefit in a
longer term.

Note that the core policy structure for the development of evidence-
based screening has two implicit but major time delays embedded in these
policy decisions: (a) the modification delay for the effective recommended
starting age (τR), and (b) the evaluation or translation delay for the benefits
and harms of screening (λt).Because this evaluation process takes time to
complete, evaluations may fail to reflect the impact of the latest changes
in screening guidelines. This “moving target” situation in policy thresh-
olds does not indicate a problem in the model but is a natural result of
bounded rationality inherent in the guideline development and the policy-
formation process. The results can get more problematic and pronounced
as τR becomes shorter, and λt becomes longer (see the section entitled
“Results”).

The Actual Starting Age (Ract) is formulated using a simple adaptive
expectation structure, which is a realistic way to model the way people
update their beliefs and perceptions. Patients are found to be mostly affected
by their individual healthcare providers while making the decision to have a
screening test and hence generating an update regarding recommendations
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involves several stages of information processing. These include the
response time of individual hospitals, doctors, and radiologists to adopt the
guidelines and diffuse it into the system and the average time required by
the public to perceive, process, and comply with the recommendations.
Hence the Public Perception Delay (λp) is modeled as a third-order smoothed
average of the R, where it reflects the total reaction time for the public to
receive, process, and respond to changing guidelines.
The R in turn determines the average or the mean age of the target screen-

ing population and hence the average prevalence of disease in this popula-
tion. The mean age of the target population, (MeanAgetarget), is well
approximated as a linear function of the Ract, with slope (δ ) and intercept
(∂), the mean age of the U.S. male population, using the U.S. Census Data for
2018, and limited by the maximum age MaxAge = ε = 100 years.

MeanAgetarget =MIN MaxAge,δ�Ract + ∂ð Þ: (16)

The Target Screening Prevalence, or the Age Specific Prevalence (D +
age ),

represents the fraction or proportion of screen-detectable cancer for this tar-
get population. We assumed that the underlying real disease burden stays
stable during the simulation time horizon and only increases by age. Age of
asymptomatic onset (ϕ) and slope (Ω) of the increase in disease prevalence
are estimated from autopsy studies and previously published models (Bell
et al., 2015; Haas et al., 2008; Jahn et al., 2015; Sanchez Chapado
et al., 2003).

D +
age =MINð1,MAX 0, MeanAgetarget−ϕ

� 	
�Ω

� 	
: (17)

Probability of disease (pD) in this target population is then determined as:

pD + =D +
age, (18)

pD− =1−D +
age: (19)

For any given population prevalence for a specific target population, our
decision-theoretic model calculates the HBR and the RHBR. Increasing levels
of the RHBR increase the Effect of HBR on Indicated Age for Screening. As
RHBR increases above its reference level HBRref, the effect of HBR becomes
higher than one and hence shifts the Indicated Starting Age R* above the
Actual Starting Age. If the RHBR reaches HBRref, the R* becomes equal to
the Actual Starting Age. R is formulated as the output of an information
delay structure, where the delay parameter is represented by the Time to
Adjust R (τR,). This parameter gives the delay time constant for the adjust-
ment time of R.
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Table 2 lists model inputs and symbols used throughout the article with
their base case values:

Model results

In the base case scenario, we assume that there is no variation in screening
advice within the United States, that is, all practitioners and patients are
complying with the recommendations derived from the evidence base only.
This is the most “ideal-world” setting one can imagine regarding any popu-
lation screening policy, as exemplified in this quote:

I think it should be peer quantification of the harms and the benefits, and from
authoritative panels. I’m not sure if the U.S. taskforce is that for the U.S. I think
probably yes. There’s politics involved, but I think nevertheless, I think we here
in Europe should really believe in authoritative panels that are independent as
possible and weigh the evidence that gets presented by the experts. I think that
should be the situation. That should be the ideal situation. (Academic,
Policymaker)

The base case simulation serves for assessment of the effects of delays and
nonlinearities inherent in screening evaluations and advice. Simulations
with base parameters confirm an overshoot in screening indications and
expansion of criteria—similar to what we have observed in the 1990s–2000s
in the United States—assuming even if there is no variation in the underly-
ing prevalence of the disease, in screening technology, or in harms and bene-
fits environment (Figure 5). While the overshoot persists over a wide range
of parameter values, the degree and extent of the overshoot changes with
changing values of the model parameters. More specifically, the overshoot of
indications gets more amplified when the Public Perception Delay λp gets
shorter, and the HBR Translation Delay λt takes longer.

We observe a similar overshoot in screening diagnostics, including false
positive rates. Harms exceed benefits as the target screening population is
expanded (Figure 5), and we see oscillations around the HBRref, while other
variables (R, V, D +

age) oscillate around a lower equilibrium. The HBR is below
HBRref at the start of the simulation, meaning screening has an added value
compared to doing nothing in the beginning, as it was in 1980s. Hence the
threshold value and then the recommended and the actual ages fall sharply
within the next decade, which causes an overshoot in indications, and a
quick expansion in screening criteria, as suggested by low values of R, V,
D +

age, and/or higher proportion of false positives.
Note that the most commonly used formal criterion for biopsy referral

threshold in the United States is 4 ng/ml, which is somewhat arbitrary
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(Hoffman, 2011). While the recommended “formal” biopsy threshold is
shown to vary only modestly over time, the informal “practice” threshold
has reportedly varied widely over the years (Thompson et al., 2004), as has

Table 2. Model inputs

Symbol [unit]
Base
Case Description

Threshold value V V [dmnl] [4] Threshold, or cutoff value, for the
test outcome, defaulted at most
commonly used threshold.

Recommended starting
age R

R [ages] [50] Recommended starting age R for
routine screening

Time to adjust V, R τV, τR [year] [1.5, 1.5] Adjustment time constant for the
rate of change of V and R

Location parameter of
lognormal pdfϵR

μ+, μ− [dmnl] [1, 0.3] Location parameter of the
associated normal pdf of test
outcome for D+ and D−

Scale parameter of
lognormal pdf > 0

σ+, σ− [dmnl] [0.6, 0.4] Scale parameter of the associated
normal pdf of test outcome for D+

and D−

Baseline onset ϕ [dmnl] [25] Asymptomatic age of onset for
disease

Slope D+ Ω [dmnl] [0.012] Rate of change in disease
prevalence per age year, based on
U.S. cancer trends)

Unit benefit j,k (j = T+,T−;
k = D+,D−)

UBj,k [dmnl] 2 0

0 1

� �
Nonnegative unit benefits for
possible test outcome and disease
state pairs

Unit harm j,k (j = T+,T−;
k = D+,D−)

UHj,k [dmnl] 0 1:75

2 0

� �
Nonnegative unit harms for
possible test outcome and disease
state pairs

Bias V, R αV, αR [dmnl] 1 Multiplier for effect of external
pressures on threshold value V
and R, such as advocacy groups

HBR translation delay λt [year] [12] Time constant for translation of
HBR, reporting delay

HBR multiplier βV, βR [dmnl] [0.5; 0.5] Multiplier for effect of HBR on
state variables V and R.

Public perception delay λp [year] [2] Average time required for public
to respond to changing guidelines

Max age ε [ages] [100] Maximum age of a person
Mean age intercept ∂ [ages] [34] Mean age of the overall male

population, calculated using U.S.
census data for 2018

Mean age slope δ [dmnl] [0.6] Rate of increase of the mean age
of the male population, as a
function of R.

Reference HBR HBRref [dmnl] [1] Reference, or the optimal value of
the HBR
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the recommended starting age, similar to what we observe in model simula-
tions The real historical pattern for the average actual biopsy threshold is
unknown, but it is assumed to be 2.5 ng/ml between 1990 and 2000 (Gulati
et al., 2010), considerably lower than the formal value (see Figure 5). For
screening to be effective, the D+ part of the target population has to be not
very low, since decreases in D+ (as a result of expansion of breadth indica-
tions, expansion of D−people in screened population) may cause the actual
harms to exceed its benefits at population level.

Note that the huge drop of fraction of D+ in the target population (fraction
of diseased people in the screening population) coincides with an increase
in test sensitivity (true positives), yet a big drop in test specificity, indicating
higher rates of false positives (Remember FP = 1 − specificity!).

Also note the long phase lag between the actual and the reported HBR,
which reflects the time needed to complete the evaluation process. When
the benefit and harm evaluations finally revealed in the 2000s that the bene-
fits of screening were lower than desired, policymakers gradually became
more selective in defining their target population; that is, they updated their
previous screening advice and narrowed their selection criteria in order to
improve future evaluations. Indeed, the formal guidelines released by the

Fig 5. Simulation with
base case parameter
values.
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USPSTF in 2008 suggested that evidence was not sufficient to recommend
PSA screening for men below 75, while the actual starting age for screening
undershot the recommendation.

The ROC curve and “Flipping the Coin”: Assuming test has no diagnostic
validity

The ROC curve shows the trade-off between specificity and sensitivity but
does not suggest the appropriate trade-off, that is, the optimal choice for the
threshold. The choice of threshold depends on the subjective costs and bene-
fits we assign to each of the four possible outcomes in different situations.
These are conditioned both by the nature of follow-ups, treatments, and con-
sequences of the disease, but also by the risk perceptions and preferences of
individuals when faced with making an informed decision.
The 45� line represents the case where there is no ability to distinguish

between the populations with and without the condition: the test has no
value. An “ideal” test with perfect discrimination (where there is no overlap
in the two distributions with respect to the test criterion) would have a ROC
curve that passes through the upper-left corner (100 percent sensitivity and
specificity). The closer the ROC curve is to the upper-left corner, the higher
the overall accuracy of the test will be (Zweig and Campbell, 1993). The area
under the ROC curve (AUC) is another metric that indicates how well a
screening test can distinguish between the two diagnostic groups. Higher
values of AUC indicate a higher discriminatory power. The empirical fitted
AUC estimates with respect to discrete occurrence of prostate cancer range
from 0.6 to 0.8: Our simulated ROC curve gives an AUC of 0.73 with base
case parameters (Figure 6a).
A screening test may only be feasible if its diagnostic accuracy is at least

slightly better than just flipping a coin. We simulated this extreme condition
to test the model behavior, by perfectly overlapping the PSA distributions of
the D+ and D− populations (not shown here). The baseline ROC curve
(Figure 6a) changes, and the true positive rate falls exactly on the 45� indif-
ference line (Figure 6b), and hence the AUC takes its minimum possible
value of 0.5, indicating that no screening test can distinguish these two
populations from each other, based on that particular test outcome alone.
The V and R both reach unrealistically high values indicating the infeasibil-
ity of screening under this condition or indicate to a point where screening
has no added value.

Sensitivity Testing

Several types of sensitivity tests are conducted by exploring the parameter
space, here we present a sample. Monte Carlo simulation, also known as
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multivariate sensitivity simulation (MVSS), is used to automate the sensitiv-
ity analysis. In each of the cases below, either one parameter or a subset of
parameters is changed in certain ranges including the plausible range to see
the differences in the dynamic behavior of the model.

Effect of HBR translation delay (λt) on screening recommendations

Figure 7 shows the change in simulation results when the λt varies. The HBR
reaches its reference value HBRref for a wide range of λt,yet screening
becomes inappropriate after a certain point as it gets longer, where harms of
screening always exceed benefits.

Effect of HBR multiplier β (βV and βR) on screening recommendations

Figure 8 depicts the effect of varying the HBR multipliers (βV and βR ) on
screening recommendations. These parameters indicate the strength of HBR
evaluations’ impact on changing the breadth indications of screening. As β’s
get higher, the overshoot in breadth indications gets amplified. When the
multipliers exceed a certain value, HBR evaluations override the “priming”
effect of the actual practice, and screening becomes inappropriate.

Sensitivity to translation and public perception delays

The HBR Translation Delay (λt) is varied between 5 and 20 years (baseline
value = 12 years) and Public Perception Delay (λp) is varied between 1 and
5 years (baseline value = 2 years). Simulation results in Figure 9 reveals that
screening is feasible, but oscillations persist in most situations, except in 5 per-
cent of the simulations where screening is inappropriate. Additional sensitiv-
ity tests were conducted by adding the two other time constants, the Time to
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Fig 7. Effect of HBR
translation delay (λt) on
screening
recommendations (varied
between 2 and 18 years).

Fig 8. Effect of HBR
multiplier (βV, βR) on
selected model outputs
(βV, βR changed at the
same time between
0 and 0.75).
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Adjust V (τV) and Time to Adjust R (τR), by varying them between reasonable
ranges of 0.5 and 4 years (baseline value = 1.5 years), with similar results.

Sensitivity to underlying disease prevalence D+ in target screening
population

We conducted another set of simulations to test the model’s behavior as the
underlying real disease prevalence naturally changes for the overall popula-
tion. To simulate the effect of underlying disease prevalence, we varied the
Baseline Onset, or the age of asymptomatic onset (ϕ) for disease, from 20 to
35, while keeping the rate of increase in disease prevalence constant.

Figure 10 shows how the D+ in the screening population affects test effi-
ciency and recommendations for screening. Simulation results indicate the
existence of a plausible range where screening is feasible. For screening to
be effective the D+ in the target population has to be not very low or very
high since harms of screening may exceed benefits at the population level.

Sensitivity to changing the distribution of test values on test efficiency

We conducted a set of simulations to see how the efficiency of a screening
test changes as the underlying distributions of the test values for disease
states change relative to each other. For PSA screening, the distribution of
test values for the D+ and D− populations are overlapping to some extent,
while the mean and the standard deviation of the distribution are naturally
higher for the D+ population with respect to the test criterion. In other
words, the D+ population has a higher mean PSA test outcome, and the dis-
tribution of their test outcomes is more spread out.

We varied the location μD +ð Þ and the scale (σD + Þ parameters of the D+ popu-
lation to simulate various combinations of test outcome distributions, which
affects a test’s intrinsic diagnostic efficacy to differentiate the diseased cases
from the healthy ones. The μD + is varied between 0.6 and 1.4 ng/ml (baseline
value = 1), and σD + is varied between 0.2 and 1 (baseline value = 0.6).

Fig 9. Effect of translation
(λt) and public perception
(λp) delays (λt; λp varied
between 5–20 and
1–5 years).
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The first set of simulations show the effect of the increasing or decreasing
overlap between the two distributions on the test efficiency (Figure 11). The
higher the mean of the test outcome for the D+ population, the less the over-
lap becomes between the two distributions, which means the groups can be
separated more easily based on the test outcome alone, leading to an
increased diagnostic efficiency for all sensitivity-specificity pairs. As the μD +

goes up, the AUC of the corresponding ROC curve gets closer to 1. As the
means start to get closer, the distributions become more inseparable, and the
AUC gets closer to 0.5, or the 45� line.

The second set of simulations show the trade-off between test sensitivity
and specificity for various degrees of overlap between the two distributions,
at various thresholds. As the σD + further increases from its baseline value,
the test diagnostics get better at higher threshold values, but worse for the
lower thresholds. At lower values of σD + , the test works better at lower
values of the threshold, where there are less false positives for a given level
of true positives. However, for lower values of σD + , if we operate on the left
side of the ROC curve at lower sensitivity levels, this can also make the
screening test inappropriate, leading harms to exceed the benefits. For the
PSA test, the μD + is high, so operating on the right-hand side of the ROC
curve at lower thresholds results in higher false positives.

Discussion

This work represents an endogenous theory for the formation and implemen-
tation of evidence-based guidelines and a novel attempt to explicitly model

Fig 11. Effect of changing
the distribution of the test
values on test efficiency.
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the decision behavior around medical screening, including both the core
issues for classical evidence-based guideline formation and the environment
in which the screening decision is embedded. We think that even a very
theoretical-stylized version of a dynamic model like that developed in this
study (with two simple components, evidence generation and dissemination)
can enhance rational decision-making and be used as a theoretical frame-
work for studying how individuals use information from the task environ-
ment to make judgments. It may also improve the debate on policy
formation by providing an analytical framework that can be used as a deci-
sion tool to aid policymakers and practitioners in multiple domains. Lessons
from this debate can be more generally applied to other contentious manage-
ment and high-stakes policy-decision domains in which there is, at very sub-
stantial cost, a huge benefit for a few and a small amount of harm for a larger
number of people, like airport and other security or background screening
against potential threats, controversial supreme court cases, tax return
audits, or federal gun laws (Erev et al., 1995; Kahn and Luce, 2003;
Swets, 2001).
One advantage of a stylized yet dynamically complex model is the sim-

plicity of the core dynamic at work. It becomes possible to feel it more
closely, as opposed to getting lost due to the numerical complexity associ-
ated with most resource allocation and optimization research. In our study,
most of the complexity comes from the structure of the system, that is, from
the complexity of the intrinsic structure (delays and feedback structure). In
real epidemiological studies or real managerial applications, it is easy to lose
this bigger outlook amid the numeric complexity of the underlying model.
We do not argue that numeric complexity is unimportant in making real-life
decisions. Rather, feedback-rich and structurally complex models can pro-
vide a simpler and larger dynamic perspective and a better means to aid
intuition regarding real problems of concern. The resulting complex decision
aid tool can be primarily used by healthcare professionals and policymakers.
While there is a long history of research in evidence-based instruction in

the medical domain, evidence-based management training is a recent addi-
tion to management education (Goodman et al., 2014). Goodman et al. (2014)
review relevant literatures from information sciences and medical education
to explore how they can inform the design and practice of evidence-based
management education.
Simulation models like ours can complement these efforts, by providing

constructive insights and a dynamic intuition to supplement the typical
empirical evidence considered to update and refine practice guidelines (such
as national cancer screening programs). They can be used as formal tools to
improve the “guidelines for guideline formation”. Perhaps more importantly,
they can help policy makers to moderate and manage the public reaction
against frequently changing recommendations. Penson (2015) argued that
the “swinging pendulum” in population screening needs to be stopped
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“somewhere in the middle” and points us to the possibility that the pendu-
lum may already be swinging back the other way in prostate screening, after
decades of overly aggressive screening and treatment. Managing the public’s
reaction is becoming an increasingly important problem in the Covid-19 era,
and in an era where the value of vaccinations is questioned more than any
other time in history.

As the amplification of breadth indications gets larger in either direction,
or similarly when the evaluation and reporting of benefits and harms takes
longer; practitioners and the public may get more reactive to changing rec-
ommendations. Simulation results confirm that effective evaluation of the
benefits and harms of screening is crucial, as well as correctly informing the
public about the risks and benefits of screening, and not stampeding them to
either direction, as exemplified in these quotes:

It’s an interesting piece that you’re doing, because its not just a matter of
looking at the evidence and saying its appropriate or not. We’ve taught the pub-
lic that screening is so important and so vital, and you have to detect cancer at
the earliest possible stage, and now were backpedaling, and people don’t like
that! They don’t like when we tell them one thing, and then ten years later, tell
them, “you know what? Maybe we’ve oversold screening in this country. May-
be we’ve oversold it a little bit. Maybe you don’t need it.” So, I think that’s
angered a lot of consumers. (Media and Science Reporter)
So, there’s been sort of a national pendulum in the general public viewpoint. In
the beginning, people were all gung-ho for it. Everybody thought it would be
great, so it was widely used and widely promoted, but then after a period of
time, you begin to see that there are flaws and problems, and those begin to cre-
ate a backlash, or criticism, and I think you need to report both of those. (Media
and Science Reporter)

Our decision-theoretic model generates a dynamic pattern of the screening
criteria that roughly matches the historical data for medical screening in the
United States. The screening criteria for many diseases have clearly
expanded in the past 30 years and then narrowed down, while showing little
sign of rebalancing as the evidence base is ignored and overshadowed by
patients, practitioners, and advocacy groups, going beyond the oscillations
described in our theoretical-stylized model.

Simulation results reveal that expansion of selection criteria and percep-
tion/reaction/ and evaluation delays play an important role in screening eval-
uations and in the overshoot behavior of screening indications. The nonlinear
feedback processes, bounded rationality, and delays inherent in evidence-
based screening aggravates the suboptimality of screening guidelines and the
policy-formation process. Although this study illustrates the “overshoot of
indications” behavior for routine population screening, other managerial
applications exist with similar potential behavior in repeated contexts.
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Conclusion

Despite the universal nature of the scientific evidence base, major health
organizations in the United States adopt different and conflicting guidelines,
with significant variation in actual practice. There are additional gaps in the
scientific evidence which cannot be directly addressed by empirical
evidence and clinical trials on which evidence-based screening recommen-
dations are based. Policymakers and clinicians face a tough choice and
trade-offs in managing their recommendations and especially in dealing with
the public reaction and resistance to frequently changing recommendations.
Policymakers and scientists increasingly employ various modeling studies

to fill in these gaps, to guide the guideline-making process, and to explore
the trade-offs in quality, capacity, and their cost effectiveness (Güneş and
Örmeci, 2018; Güneş et al., 2004; Goldie et al., 2006; Pandya et al., 2015)
which is particularly important at a time when their trustworthiness or qual-
ity have been questioned (Ransohoff et al., 2011; Ransohoff et al., 2013;
Ransohoff and Sox, 2013). The USPSTF started the effort to standardize the
guideline-development process in the early 2000s (Harris et al., 2001) and
has been since using model-based insights in developing its breast
(Mandelblatt et al., 2009), colorectal (Zauber et al., 2008), and prostate
screening recommendations (Draisma et al., 2009). Most recently, the World
Health Organization (WHO) released a special edition on enhancing WHOs
standard guideline-development methods, entitled “Complex Health Inter-
ventions in Complex Systems: Concepts and Methods for Evidence-Informed
Health Decisions.” The issue suggests considering issues of complexity when
developing evidence-based guidelines may make WHO guidelines more rele-
vant and have greater impact in countries (Booth et al., 2019; Noyes
et al., 2019; Petticrew et al., 2019).
While there is a proliferation of modeling studies to inform the CPG’s, not

many are addressing the actual guideline-making process itself. Existing
studies largely ignore the broad boundary feedbacks and inherent delays in
decision-making that condition the adoption of and adherence to CPG’s. In
most guideline frameworks, evidence reviews lead to evidence interpretation
and then policy, with no feedback incorporated/considered at any of these
steps. Linear thinking is prevalent in policy formation and interpretation,
and broad boundary feedbacks are largely ignored in existing frameworks
and mindsets.
Another widely ignored aspect in existing studies is their ubiquitous

assumption for constancy in most of their variables; most system variables
are treated as exogenous parameters. Earlier models assume a biopsy referral
threshold which stays constant during the simulation time horizon, not an
accurate reflection of the clinical practice as we discussed in this study.
Hence the same thing is true for the efficiency of the test and the test
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diagnostics, including sensitivity and specificity, and the disease prevalence
in the target screening population, which are intrinsically connected and
endogenously evolving over time.

Since we derive the test diagnostics directly from the underlying probabil-
ity distributions of diseased and healthy people, we can show how test diag-
nostics and the probability of disease change over time with changing
indications of screening and changing target population. Future extensions
of the model can as well be used to estimate the real underlying prevalence
of a disease, and addition of an “indolent” disease category may facilitate to
make inferences about the real occult disease prevalence in the population.
In this study, we show how the most important “system variables” interact
to create broad boundary feedbacks and that they are far more important
than merely focusing on parameter values. These feedbacks and delays need
to be included in future studies and the guideline development and policy-
formation process.

The theoretical evidence-based policy structure we present corresponds to
an idealized world: we assume that there is only one set of guidelines, and
they are followed by the public, while the only consideration is the
evidence-based harms-benefits calculations. In this perfect world, we may
indeed gradually approach the reference target level for screening; yet note
that even in this idealized situation, we see an overshoot in breadth indica-
tions in most cases.

Another counterintuitive insight from the model is that trying to detect dis-
ease at earlier stages results in the expansion of the eligibility criteria for dis-
ease, decrease in the real disease prevalence in the target population as a result
of this expansion, which eventually leads to a worsening in test diagnostics, in
terms of reduced specificity and more false positives. In other words, the more
we screen for a condition to eradicate a chronic disease with varying indica-
tions, such as autism spectrum disorder, attention deficit disorder, Alzheimer’s
disease, or hypertension, the more people need to be included in the target
population to reach that goal. This firefighting effort in population screening
may lead to a vicious cycle, labeling more people with disease, making the
screening effort both ineffective and impossible to afford, which is nonintuitive
and contrary to heuristic thinking (Hammond, 2007; Kahneman, 2011;
Marshall, 2014; Ransohoff et al., 2002; Sterman, 1989, 2006).
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