Konferans bildirisi Açık Erişim

Channel Estimation for Visible Light Communications Using Neural Networks

Yesilkaya, Anil; Karatalay, Onur; Ogrenci, Arif Selcuk; Panayirci, Erdal


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Channel Estimation for Visible Light Communications Using Neural Networks</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.81043/aperta.111782</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <controlfield tag="001">111782</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">Visible light communications (VLC) is an emerging field in technology and research. Estimating the channel taps is a major requirement for designing reliable communication systems. Due to the nonlinear characteristics of the VLC channel those parameters cannot be derived easily. They can be calculated by means of software simulation. In this work, a novel methodology is proposed for the prediction of channel parameters using neural networks. Measurements conducted in a controlled experimental setup are used to rain neural networks for channel tap prediction. Our experiment results indicate that neural networks can be effectively trained to predict channel taps under different environmental conditions.</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Kadir Has Univ, Istanbul, Turkey</subfield>
    <subfield code="a">Karatalay, Onur</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Kadir Has Univ, Istanbul, Turkey</subfield>
    <subfield code="a">Ogrenci, Arif Selcuk</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Kadir Has Univ, Istanbul, Turkey</subfield>
    <subfield code="a">Panayirci, Erdal</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="b">conferencepaper</subfield>
    <subfield code="a">publication</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Kadir Has Univ, Istanbul, Turkey</subfield>
    <subfield code="a">Yesilkaya, Anil</subfield>
  </datafield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="a">2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2016-01-01</subfield>
  </datafield>
  <controlfield tag="005">20210420142502.0</controlfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="a">10.81043/aperta.111781</subfield>
    <subfield code="i">isVersionOf</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:zenodo.org:111782</subfield>
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:35ead6ca7a917efb0c7753916cbaf13d</subfield>
    <subfield code="s">203</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/111782/files/bib-a2475818-e88c-4b00-9f7d-994bbd71cde0.txt</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
    <subfield code="a">Creative Commons Attribution</subfield>
  </datafield>
</record>
88
4
görüntülenme
indirilme
Görüntülenme 88
İndirme 4
Veri hacmi 812 Bytes
Tekil görüntülenme 88
Tekil indirme 4

Alıntı yap