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Starting from a divergence-free rank-4 tensor of which the trace is the cosmological Einstein tensor, we
give a construction of conserved charges in Einstein’s gravity and its higher derivative extensions for
asymptotically anti-de Sitter spacetimes. The current yielding the charge is explicitly gauge invariant, and
the charge expression involves the linearized Riemann tensor at the boundary. Hence, to compute the mass
and angular momenta in these spacetimes, one just needs to compute the linearized Riemann tensor.
We give two examples.
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I. INTRODUCTION

Let us start with a seemingly innocent question whichwill
have far-reaching consequences for the conserved charges of
gravity theories. Given the Riemann tensor Rν

μβσ, its single
trace (over the first and third indices) yields the Ricci tensor
Rμσ; is there a rank-4 tensor of which the single trace is not
the Ricci tensor but the (cosmological) Einstein tensor,
Gμσ ¼ Rμσ − 1

2
Rgμσ þ Λgμσ , with the condition that this

four-index tensor has the symmetries of the Riemann tensor
and it is divergence free just like the Einstein tensor?
Remarkably, the answer is affirmative : the tensor

Pνμβσ ≔ Rνμβσ þ gσνRβμ − gβνRσμ þ gβμRσν − gσμRβν

þ
�
R
2
−
Λðn − 3ÞÞ
n − 1

�
ðgβνgσμ − gσνgβμÞ ð1Þ

whose construction will be given below does the job. Its
divergence-free for all smoothmetrics, i.e.,without the use of
any field equations

∇νPν
μβσ ¼ 0; ð2Þ

and its trace is the cosmological Einstein tensor as desired,

Pν
μνσ ¼ ð3 − nÞGμσ: ð3Þ

Clearly, the interesting exception is that one cannot do this
construction in three dimensions.What happens for n ¼ 3 is
that the P-tensor vanishes identically since, due to the
vanishing of the Weyl tensor, the Riemann and the Ricci
tensors carry the same amount of information and the
Riemann tensor can be expressed in terms of the Ricci
tensor as

Rνμβσ ¼ Rνβgμσ þ Rμσgνβ − Rνσgμβ − Rμβgνσ

−
R
2
ðgνβgμσ − gμβgνσÞ: ð4Þ

Therefore, in some sense, the P-tensor (1) is an obstruction
for a smooth generically curved metric to be three dimen-
sional. This can also be seen from the following identity: the
Gauss-Bonnet combination χGB≔RνμβσRνμβσ−4RμνRμνþR2

vanishes identically in three dimensions, and it is easy to
show that the contraction of the P-tensor with the Riemann
tensor yields1

RνμβσPνμβσ ¼ χGB − 2Λ
ðn − 3Þ
n − 1

R; ð5Þ
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1On a curious note, one can see that the square of this tensor
yields a particular Einstein plus quadratic gravity in generic n ≥ 4
dimensions,

P2
νμβσ ¼ χGB þ ðn − 3Þ

�
4R2

μν þ
R2

2
ðn − 6Þ

− 2Λ
ðn − 3Þ
n − 1

ððn − 2ÞR − ΛnÞ
�
;

which is not the Lagrangian of critical gravity [1,2].
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which vanishes in three dimensions, but gives the Einstein-
Gauss-Bonnet Lagrangian (with a fixed relative coefficient)
in generic n dimensions. The natural question is how one
arrives at theP-tensor (1). We have found theP-tensor from
the following construction: starting from theBianchi identity

∇νRσβμρ þ∇σRβνμρ þ∇βRνσμρ ¼ 0 ð6Þ

and carrying out the gνρ multiplication, one arrives at the
Pν

μβσ as given in (1) after making use of ∇μGμν ¼ 0,
∇μgαβ ¼ 0. Note that this still leaves an ambiguity in the
P-tensor, since one can add an arbitrary constant times
gμσgβν, but that part can be fixed by demanding that the
P-tensor has the symmetries of the Riemann tensor and also
vanishes for constant curvature backgrounds, which we
assumed. This tensor turns out to be extremely useful in
finding conserved charges of Einstein’s gravity for asymp-
totically AdS spacetimes for n > 3 dimensions. Recently, in
Ref. [3], we gave a brief account of this formulation in
Einstein’s theory, and in the current work, we shall extend
this formulation to quadratic and generic gravity theories.
The main motivation of our construction is the follow-

ing: outside the localized sources, the properties of gravity
are fully encoded in the Riemann tensor. One would
naturally expect that the charge expression, which is an
integral in the boundary of a spacelike surface, would also
involve the Riemann tensor at infinity. But a straightfor-
ward computation shows that this is not the case, as we
shall revisit in the next section. The existing formulas
involve the first derivatives of the metric perturbation. The
crux of the matter is that the existing expressions are based
on conserved currents which are only gauge invariant up to
a boundary term that vanishes. Our formalism remedies this
and constructs an explicitly gauge-invariant current and
simplifies the charge expressions significantly.
The layout of the paper is as follows. In Sec. II, which is

the bulk of the paper, we discuss the conserved Killing
charges in generic gravity and give a compact expression
that utilizes the P-tensor. In Sec. III, we discuss the gauge-
invariance issue of the conserved currents. In Sec. IV, we
study the n-dimensional Schwarzschild-AdS spacetime and
the AdS soliton. In Ref. [3], we studied the Kerr-AdS
solution, and hence we shall not repeat it here.

II. CONSERVED CHARGES

Conserved charges of generic gravity theory in asymp-
totically AdS spacetimes were constructed in Ref. [4] as an
extension of the Abbott-Deser charges [5] of the cosmo-
logical Einstein theory. The latter is a generalization of the
Arnowitt-Deser-Misner (ADM) charges [6] which are valid
for asymptotically flat spacetimes. A detailed account of
these constructions was recently given in Ref. [7], and for
related constructions, see Refs. [8] and [9]. Here, for the
sake of completeness, we will briefly summarize the salient
parts of this construction. Consider a generic gravity theory

defined by the field equations depending on the Riemann
tensor (R), its derivatives, and contractions,

Eμνðg;R;∇R;R2;…Þ ¼ κτμν; ð7Þ

where ∇μEμν ¼ 0 and κ is the n-dimensional Newton
constant while τμν represents a localized conserved source.
A nontrivial, partially conserved current arises after one
splits the metric as

gμν ¼ ḡμν þ κhμν; ð8Þ

which yields a splitting of the field equations as

κðEμνÞð1ÞðhÞ ¼ κτμν − κ2ðEμνÞð2ÞðhÞ þOðκ3Þ; ð9Þ

where we assumed that ḡ solves the field equations,
EμνðḡÞ ¼ 0, exactly in the absence of any source τμν and
ðEμνÞð1ÞðhÞ≔ d

dκEμνðḡþκhÞjκ¼0. Hence, defining ðEμνÞð1Þ ≔
Tμν, one has the desired partially conserved current, if the
background admits a Killing vector ξ̄:

J μ ≔
ffiffiffiffiffiffi
−ḡ

p
ξ̄νðEμνÞð1Þ: ð10Þ

As usual, making use of the Stokes theorem, given a
spacelike hypersurface Σ̄, one has the conserved charge for
each background Killing vector

Qðξ̄Þ ≔
Z
Σ̄
dn−1y

ffiffiffī
γ

p
n̄μξ̄νðEμνÞð1Þ; ð11Þ

where we assumed the that J μ vanishes at spacelike
infinity. To proceed further and reduce this integral over
Σ̄ to an integral over the boundary ∂Σ̄, one must know the
field equations and express ξ̄νðEμνÞð1Þ as a divergence of an
antisymmetric 2-tensor. Recently [3], we have shown that,
using the P-tensor of the previous section, one can
reformulate this problem in the cosmological Einstein
theory in AdS spacetimes without using the explicit form
of the linearized cosmological Einstein tensor. This is
possible because in Einstein spaces (that are not Ricci flat
such as the AdS) one has the nice property that the Killing
vector can be derived from an antisymmetric “potential”
F̄ μν as

ξ̄μ ¼ ∇̄νF̄ νμ; ð12Þ

where F̄ νμ ¼ − 2
R̄ ∇̄νξ̄μ with R̄ being the constant scalar

curvature. Although this result is valid for any Einstein
space as a background, for concreteness, we shall work in
the AdS background, for which we have
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R̄μανβ ¼
2Λ

ðn − 2Þðn − 1Þ ðḡμνḡαβ − ḡμβḡανÞ;

R̄μν ¼
2Λ
n − 2

ḡμν; R̄ ¼ 2nΛ
n − 2

: ð13Þ

To find the conserved charges of a gravity theory defined
on an asymptotically AdS spacetimeM, let us assume that
there is an antisymmetric 2-form, F μν, on the manifold.
Then, one has the exact equation for any smooth metric

∇νðF βσPνμβσÞ − Pνμβσ∇νF βσ ¼ 0: ð14Þ

Linearization of (14) about the AdS background yields

∇̄νððPνμβσÞð1ÞF̄ βσÞ − ðPνμβσÞð1Þ∇̄νF̄ βσ ¼ 0; ð15Þ

which is the main equation from which we will read the
conserved current.

A. Einstein’s theory

Let us recapitulate the main points of Ref. [3]. Using the
following equivalent form of the P-tensor, written in terms
of the cosmological Einstein tensor,

Pν
μβσ ≔ Rν

μβσ þ δνσGβμ − δνβGσμ þ Gν
σgβμ − Gν

βgσμ

þ
�
R
2
−
Λðnþ 1Þ
n − 1

�
ðδνσgβμ − δνβgσμÞ; ð16Þ

one arrives at its linearized form

ðPνμβσÞð1Þ ¼ ðRνμβσÞ1 þ 2ðGμ½βÞð1Þḡσ�ν
þ 2ðGν½σÞð1Þḡβ�μ þ ðRÞð1Þḡμ½βḡσ�ν

þ 4Λ
ðn − 1Þðn − 2Þ ðh

μ½σ ḡβ�ν þ ḡμ½σhβ�νÞ; ð17Þ

where the square brackets denote antisymmetrization with a
factor of 1=2. For the particular antisymmetric background
tensor

F̄ αβ ≔ ∇̄αξ̄β; ð18Þ

where ξ̄β is an AdS Killing vector, one finds from (15) the
following conserved current:

ξ̄λðGλμÞð1Þ ¼ ðn − 1Þðn − 2Þ
4Λðn − 3Þ ∇̄νððPνμβσÞð1ÞF̄ βσÞ: ð19Þ

Comparing this with the integrand of (11), and using the
Stokes theorem one more time, we find the desired result

Qðξ̄Þ ¼ ðn − 1Þðn − 2Þ
8ðn − 3ÞΛGΩn−2

Z
∂Σ̄

dn−2x
ffiffiffī
γ

p
ϵ̄μνðRνμ

βσÞð1ÞF̄ βσ;

ð20Þ

where ðRνμ
βσÞð1Þ is the linearized part of the Riemann tensor

about the AdS background. Observe that on the boundary
ðPνμ

βσÞð1Þ ¼ ðRνμ
βσÞð1Þ, since the linearized Einstein tensor

and the linearized scalar curvature vanish. The barred
quantities refer to the background spacetime M̄ with the
boundary ∂M̄. The Killing vector is ξ̄σ from which one
defines the antisymmetric tensor as F̄ βσ ¼ ∇̄βξ̄σ. The spatial
hypersurface Σ̄ is not equal to ∂M̄; hence, Σ̄ can have a
boundary of its own, that is ∂Σ̄. Here, the antisymmetric
2-form ϵ has components ϵ̄μν ≔ 1

2
ðn̄μσ̄ν − n̄νσ̄μÞ, where n̄μ is

a normal 1-form on ∂M̄ and σ̄ν is the unit normal 1-form on
∂Σ̄ and γ̄ is the induced metric on the boundary. This is
sufficient for the conserved charges of the cosmological
Einstein theory in AdS. But for a generic theory, one must
carry out an analogous computation, which is what we do
next. But before that, let us note that for the energy of the
spacetime, we have ξ̄ ¼ ∂t, and (20) becomes

E ≔ Qð∂tÞ

¼ ðn − 1Þðn − 2Þ
2ðn − 3ÞΛGΩn−2

Z
∂Σ̄

dn−2x
ffiffiffī
γ

p ðRrt
rtÞð1Þ∇̄rξ̄t; ð21Þ

where r is the radial coordinate and one takes r → ∞ at the
end of the computation. Similarly, for the angular momen-
tum, one can take the Killing vector ξ̄μ ¼ ð0;…; 1; 0;…; 0Þ
and carry out the computation.

B. Generic theory

Consider a generic gravity theory which starts with the
Einsteinian part as

Eμν ¼
1

κ

�
Rμν −

1

2
Rgμν þ Λ0gμν

�
þ σEμν ¼ τμν; ð22Þ

where at this stage all we know about the Eμν-tensor is that
it is a symmetric divergence-free tensor (which can come
from an action) and σ is a dimensionful parameter. To
proceed further, it is better to recast the equation as

Eμν ¼
1

κ
Gμν þ

Λ0 − Λ
κ

gμν þ σEμν ¼ τμν; ð23Þ

the ðAÞdS vacua of which are determined by

Ēμν ¼
Λ0 − Λ

κ
ḡμν þ σĒμν ¼ 0; ð24Þ

which in general has many vacua depending on the details
of the Ēμν tensor. We shall assume thatΛ represents any one
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of the viable vacua. To find the conserved charges in this
theory, we use the same procedure as the one in the
previous section and define

ðEμνÞð1Þ ¼ Tμν; ð25Þ

where the right-hand side has all the higher order
terms

Tμν ¼ τμν − κðEμνÞð2Þ − κ2ðEμνÞð3Þ − � � � : ð26Þ

So, we have the background conserved current

∇̄νðξ̄μðEμνÞð1ÞÞ ¼ 0; ð27Þ

and the partially conserved current is J ν ¼ ffiffiffiffiffiffi
−ḡ

p
ξ̄μðEμνÞð1Þ.

Hence, we must compute2

ξ̄μðEμνÞð1Þ ¼ 1

κ
ξ̄μðGμνÞð1Þ − Λ0 − Λ

κ
ξ̄μhμν þ σξ̄μðEμνÞð1Þ:

ð28Þ

We have already computed the first part in the previous
subsection, and hence, the new parts are the second and the
third terms. But when the theory is not given, one cannot
proceed further from this point. For this reason, let us
consider the quadratic theory as an example which also
covers all the fðRiemannÞ type theories. The action of the
quadratic theory is

I ¼
Z

dnx
ffiffiffiffiffiffi
−g

p �
1

κ
ðR − 2Λ0Þ þ αR2 þ βRμνRμν

þ γðRμνρσRμνρσ − 4RμνRμν þ R2Þ
�
; ð29Þ

and the field equations are [4]

1

κ

�
Rμν −

1

2
gμνRþ gμνΛ0

�
þ 2αR

�
Rμν −

1

4
gμνR

�
þ ð2αþ βÞðgμν□ −∇μ∇νÞR

þ 2γ

�
RRμν − 2RμσνρRσρ þ RμσρτRν

σρτ − 2RμσRσ
ν −

1

4
gμνðRαβρσRαβρσ − 4RαβRαβ þ R2Þ

�

þ β□

�
Rμν −

1

2
gμνR

�
þ 2β

�
Rμσνρ −

1

4
gμνRσρ

�
Rσρ ¼ τμν: ð30Þ

Inserting (13) in the last equation, one finds the equation
satisfied by Λ:

Λ−Λ0

2κ
þ
�
ðnαþ βÞ ðn− 4Þ

ðn−2Þ2þ γ
ðn− 3Þðn− 4Þ
ðn− 1Þðn− 2Þ

�
Λ2

�
¼ 0:

ð31Þ

Defining the constant

c ≔
1

κ
þ 4Λn
n − 2

αþ 4Λ
n − 1

β þ 4Λðn − 3Þðn − 4Þ
ðn − 1Þðn − 2Þ γ; ð32Þ

one can show that the linearized expressions read

σξ̄νðEμνÞð1Þ − Λ0 − Λ
κ

ξ̄νhμν

¼
�
c −

1

κ
þ 4Λ
ðn − 1Þðn − 2Þ β

�
ξ̄νðGμνÞð1Þ

þ 2β∇̄αðξ̄ν∇̄½αðGμ�νÞð1Þ þ ðGν½αÞð1Þ∇̄μ�ξ̄νÞ
þ ð2αþ βÞ∇̄αð2ξ̄½μ∇̄α�ðRÞð1Þ þ ðRÞð1Þ∇̄μξ̄αÞ; ð33Þ

which then yields the desired result

ξ̄νðEμνÞð1Þ ¼
�
cþ 4Λ

ðn − 1Þðn − 2Þ β
�
ξ̄νðGμνÞð1Þ ð34Þ

þ 2β∇̄αðξ̄ν∇̄½αðGμ�νÞð1Þ þ ðGν½αÞð1Þ∇̄μ�ξ̄νÞ
þ ð2αþ βÞ∇̄αð2ξ̄½μ∇̄α�ðRÞð1Þ þ ðRÞð1Þ∇̄μξ̄αÞ:

ð35Þ

Therefore, the conserved charges in quadratic gravity
in (A)dS read as

2At this stage, we can search for a modified version of the P-
tensor, which is conserved and the trace of which is the E-tensor.
One can find such a tensor, but it does not have the symmetries of
the Riemann tensor anymore, and hence it does not make the
ensuing computation any simpler.
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Qðξ̄Þ ¼ ðn − 1Þðn − 2Þ
4Λðn − 3Þ

�
cþ 4Λβ

ðn − 1Þðn − 2Þ
�Z

∂Σ̄
dn−2x

ffiffiffī
γ

p
ϵ̄μνðRνμ

βσÞð1ÞF̄ βσ: ð36Þ

Observe that for asymptotically AdS spacetimes, the
second and third lines in (35) do not contribute. But if one
tries to generalize the above procedure to asymptotically
nonconstant curvature spacetimes, those parts will also
contribute generically. Therefore, for asymptotically AdS
spacetimes, the only difference between the conserved
charges in Einstein’s theory (20) and the quadratic theory
is the numerical factor in (36). Using the ideas presented in
Ref. [10], the above construction can be extended to any
fðRiemannÞ theory, where f is a smooth function. This is
because, as far as the energy, vacua, and particle contents
are considered, any fðRiemannÞ theory has an equivalent
quadratic action formulation in which one computes only

three quantities fðR̄μν
αβÞ, ∂f

∂Rμν
αβ
, ∂2f
∂Rμν

αβR
ρσ
ηδ
and their contractions

to find the κ, α, β, and γ of the theory to insert in (36). As
this issue is dealt with in Refs. [10,11], we refer the reader
to these works. So, the crucial part is the Einsteinian part,
which we have studied in the previous section.

III. GAUGE-INVARIANCE ISSUE

The problem of the gauge transformations of the charge
and the current that yields the charge is important. Clearly,
one expects the charge to be gauge invariant in any valid
formulation, but the current need not be. In fact, earlier
constructions of conserved charges [4,5] used gauge-
variant currents which yielded gauge-invariant charges.
Of course, for the charges to be gauge invariant, the
noninvariance of the current is only up to a boundary
term that vanishes in the boundary. Let us show this in
the expression of Ref. [4] for the cosmological Einstein
theory,

2ξ̄νðGμνÞð1Þ ¼ ∇̄αJ αμ; ð37Þ

where the antisymmetric current is

J αμ ≔ ξ̄α∇̄βhμβ − ξ̄μ∇̄βhαβ þ ξ̄ν∇̄μhαν

− ξ̄ν∇̄αhμν þ ξ̄μ∇̄αh − ξ̄α∇̄μh

þ hμν∇̄αξ̄ν − hαν∇̄μξ̄ν − h∇̄αξ̄μ: ð38Þ

Consider an infinitesimal coordinate transformation gen-
erated by a vector field ζ (not to be confused with the
Killing field ξ); one has

δζhμν ¼ ∇̄μζν þ ∇̄νζμ ¼ Lζḡμν; ð39Þ

where Lζ denotes the Lie derivative and hence δζhμν ¼
−Lζ ḡμν. It is easy to see that δζðGμνÞð1Þ ¼ LζḠμν ¼ 0. But

this only implies from (37) that one has the divergence of
the gauge-transformed current to vanish

∇̄αδζJ αμ ¼ 0; ð40Þ

and hence J αμ is not necessarily gauge invariant. In fact,
one can show that J αμ varies, under the gauge trans-
formations (39), as

δζJ αμ ¼ ∇̄νðξ̄α∇̄νζμ þ ξ̄μ∇̄αζν þ ξ̄ν∇̄μζα þ 2ζα∇̄νξ̄μ

þ ζν∇̄μξ̄α − ðμ ↔ αÞÞ: ð41Þ

Clearly, since the variation is a boundary term and since
J αμ is the integrand on the boundary of the spatial slice, the
boundary term does not contribute to the charges (as
∂∂Σ̄ ¼ 0), and hence the charge is gauge invariant. But
this exercise shows us that the current (38) is only gauge
invariant up to a boundary term.
On the other hand, since δζðRνμ

βσÞð1Þ is gauge invariant,
our charge expression (20) is explicitly gauge invariant
without an additional boundary term. Let us show this:

δζðRνμ
βσÞð1Þ ¼ ḡαμδζðRν

αβσÞð1Þ − R̄ν
αβσδζhαμ: ð42Þ

Given the linearized Riemann tensor as

ðRν
αβσÞð1Þ ¼ ∇̄βðΓν

σαÞð1Þ − ∇̄σðΓν
βαÞð1Þ; ð43Þ

one needs

δζðΓν
σαÞð1Þ ¼ ∇̄σ∇̄αζ

ν þ R̄ν
αρσζ

ρ: ð44Þ

Collecting all the pieces together, one arrives at

δζðRνμ
βσÞð1Þ ¼ LζR̄νμ

βσ: ð45Þ

For the AdS background, one clearly has LζR̄νμ
βσ ¼ 0 and

hence δζðRνμ
βσÞð1Þ ¼ 0, and so δζQ ¼ 0 as expected. So, in

our formalism, not only is the charge explicitly gauge
invariant, but also the current is explicitly gauge invariant.
In addition to the above discussion of gauge invariance

which amounts to changing the coordinates under which
the field transforms as (39), one can consider transforma-
tions which are isometries of the background spacetime.
Under the latter transformations, the hμν field transforms as
a (0, 2) tensor field. In the case of AdS spacetime, these
transformations form the group OðD − 1; 2Þ for D ≥ 4 and
an infinite-dimensional group in D ¼ 3 dimensions [12].
As opposed to the “gauge symmetries” above, these are
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genuine symmetries of the background spacetime. Namely,
the generators of these transformations are conserved
nontrivial charges. Of course, the components of the
background Killing vectors transform as vectors under
these isometries, and in general, one gets a superposition of
Killing vectors which is a Killing vector itself. So, as
expected, the conserved charges (as generators of sym-
metries) satisfy the isometry algebra.

IV. SOME ASYMPTOTICALLY
ADS SPACETIMES

We have given the computation of the energy and the
angular momentum of the four-dimensional Kerr-AdS
solution in Ref. [3]; here, let us give two more examples.

A. n-dimensional AdS-Schwarzschild spacetime

Consider a spherically symmetric metric in n dimensions:

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩn−2: ð46Þ

For the choice

fðrÞ ¼ 1 −
�
r0
r

�
n−3

þ r2

l2
; l2 ≡ −

ðn − 1Þðn − 2Þ
2Λ

;

ð47Þ

the metric (46) is an Einstein spacetime with the Ricci
tensor

Rμν ¼ −
n − 1

l2
gμν: ð48Þ

As such, it solves the n-dimensional vacuum Einstein
equations with a cosmological constant. For the Killing
vector ξμ ¼ ð−1; 0;…; 0Þ, one needs to compute the
integrand in (21), which boils down to computing the
expression ðRrt

rtÞð1Þ∇̄rξ̄t. It is easy to see that the relevant
component of the full Riemann tensor reads

Rrt
rt ¼ −

1

2
f00ðrÞ; ðRrt

rtÞð1Þ ¼ −ðn − 3Þðn − 2Þ r
n−3
0

rn−2
;

ð49Þ

where f0ðrÞ ¼ dfðrÞ
dr . Similarly, one has ∇̄rξ̄t ¼ − f0

2
jr0→0 ¼

− r
l2. Combining all these in (21) for G ¼ 1, one finds the

energy of (46) as

E ¼ n − 2

4
rn−30 ; ð50Þ

which is exactly the one computed in Ref. [4]. In four
dimensions, one has r0 ¼ 2m and E ¼ m.

B. AdS soliton

The metric of the “AdS soliton” was found by Horowitz
and Myers [13] and reads as

ds2 ¼ r2

l2

��
1 −

rpþ1
0

rpþ1

�
dτ2 þ

Xp−1
i¼1

ðdxiÞ2 − dt2
�

þ
�
1 −

rpþ1
0

rpþ1

�
−1 l2

r2
dr2: ð51Þ

We shall not go into the physical meaning of this solution,
which is obtained from a p-brane metric; the Cartesian
coordinates xi (i ¼ 1;…; p − 1) and the t denote the
coordinates on the “brane” and r ≥ r0. The solution does
not have a singularity if the coordinate τ is periodic with a
period β ¼ 4πl2=ðr0ðpþ 1ÞÞ. Consider the timelike
Killing vector

ξ̄μ ¼ ð−1; 0;…; 0Þ; ð52Þ

then, ∇̄rξ̄t ¼ −r
l2 . The relevant linearized Riemann tensor

component can be computed to be

ðRrt
rtÞð1Þ ¼ −

ðn − 3Þ
2l2

rn−10

rn−1
; ð53Þ

which also shows that there is no n ¼ 3 AdS soliton.
Making use of (21), one obtains

E ¼ −
Vn−3π

ðn − 1ÞΩn−2

rn−20

ln−2 ; ð54Þ

where Vn−3 is the volume of the compact dimensions. This
result matches the one obtained in Ref. [14].

V. CONCLUSIONS

In a gauge or gravity theory, the conserved charges make
sense if they are gauge or coordinate invariant (at least for
small transformations). The ADM [6] and AD [5] charges
and their generalizations to higher order gravity [4] are all
gauge invariant. Namely, they are invariant under small
diffeomorphisms. (Large diffeomorphisms are a different
story; even the flat Minkowski space, while remaining flat,
can be assigned any mass value in a coordinate system that
does not have proper asymptotics. See Ref. [7] for a brief
review of this issue.) However, the explicit expressions of
these charges do not involve the relevant gauge-invariant
quantity, that is, the linearized Riemann tensor with two up
and two down indices, ðRμν

σρÞð1Þ, but instead they involve
the first covariant derivative of the metric perturbation as
∇̄αhμν contracted with the Killing vector in such a way that
the final result is gauge invariant only up to a divergence
term which vanishes in the boundary. The obvious question
is to try to understand if the gauge-invariant charges can be
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written in an explicitly gauge-invariant way with the help of
the Riemann tensor.
There is a stronger motivation for such a search: outside

the sources, the Riemann tensor carries all the information
about gravity. Naturally, it must carry the information about
the conserved charges. It turns out, as we have shown
recently [3] and here, this is indeed the case and the
conserved charge is basically a flux of the Riemann tensor
at spatial infinity contracted with an antisymmetric 2-
tensor. The construction is somewhat nontrivial and is
valid only for asymptotically AdS spacetimes (which can
be generalized to Einstein spacetimes with a nonzero scalar
curvature). More specifically, in the cosmological Einstein
theory, our construction remains intact for any Einstein
spacetimes as long as there is a background Killing vector
field. For generic gravity theories, the construction is
analogous, but there arise many more terms in the final
expressions. For an example of this, see the quadratic
gravity studied in Ref. [15].
The reason that one can write the conserved charges as a

flux of the linearized Riemann tensor at all is that for AdS
spacetimes a given Killing vector ξ̄μ has an antisymmetric
2-form potential as ξ̄μ ¼ ∇̄νF̄ μν, which helps bring another
covariant derivative in the conserved charges whenever the
Killing vector appears, converting the expression to the
linearized Riemann tensor that has two covariant deriva-
tives of the metric perturbation. To find the charge
expression, we used a divergence-free rank-4 tensor of

which the trace is the Einstein tensor. Interestingly, this
construction is valid only for n ≥ 4 dimensions and is not
valid in three dimensions, since the Riemann tensor can be
expressed directly in terms of the Einstein tensor in three
dimensions, the linearized version of which vanishes at
spatial infinity.
Finally, we should note that it was realized a long time

ago by Regge and Teitelboim [16] that in the fully non-
linear Hamiltonian treatment of general relativity in spa-
tially open manifolds one has to include a boundary term
E½g� to the bulk Hamiltonian for the functional derivatives
of the functionals with respect to the canonical fields to
make sense. Namely, to reproduce Einstein’s equations
from the Hamiltonian equations, one must add a surface
term to the Hamiltonian, which, on the appearance, does
not modify the Hamiltonian equations but makes them well
defined. That term turns out to be the ADM energy
(E½g� ¼ EADM½h�) given by the derivative of the linearized
metric at spatial infinity. Moreover, the value of the full
Hamiltonian, say H, which is a sum of the bulk and
boundary terms, yields H ¼ EADM½h� upon use of the field
equations. Namely, the apparently linear-looking ADM
energy captures all the nonlinear energy stored in the
gravitational field and the localized matter in the bulk of the
spacetime. The same construction works for the Abbott-
Deser energy in asymptotically AdS spacetimes, and here,
we have given an explicitly gauge-invariant formulation of
this energy and other conserved charges.
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