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We give a new construction of conserved charges in asymptotically anti-de Sitter spacetimes in
Einstein’s gravity. The new formula is explicitly gauge-invariant and makes direct use of the linearized
curvature tensor instead of the metric perturbation. As an example, we compute the mass and angular
momentum of the Kerr-AdS black holes.
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I. INTRODUCTION

In Einstein’s gravity, outside a source, in a vacuum, all
the effects of gravity are encoded in the Riemann tensor (or
the Weyl tensor when there is no cosmological constant).
This should also be the case for conserved charges, such as
mass-energy and angular momentum. Here we show that
such a construction of conserved charges exists in asymp-
totically anti de Sitter (AdS) spacetimes. Namely the total
mass-energy or angular momentum of an asymptotically
AdS spacetime can be directly computed from an integral
that is written in terms of the linearized part of the Riemann
tensor.
Just like in any other theory in a flat spacetime,

conserved charges in gravity play a major role in under-
standing the integration parameters that appear in the
classical solutions such as the black holes and their
thermodynamics. But in contrast to the flat spacetime, a
generic curved spacetime does not have any symmetries
and hence one should not expect any conserved quantities.
Fortunately, for some spacetimes which are important in
black hole physics and cosmology, one can define total
mass (energy) and angular momentum given that the
spacetime is asymptotically flat or (anti)-de-Sitter. For an
asymptotically flat spacetime, we have the celebrated
Arnowitt-Deser-Misner (ADM) mass [1] which is also a
geometric invariant for the spacelike hypersurface of the
four dimensional spacetime as long as certain asymptotic
conditions on the decay of the metric tensor and the

extrinsic curvature are satisfied. One can also give a similar
formula for the total angular momentum of asymptotically
flat spacetimes. A generalization to asymptotically (A)dS
spacetimes was carried out by Abbott and Deser (AD) [2].
In the usual formulation of conserved charges [3], given

a background Killing vector ξ̄μ a partially conserved current
in Einstein’s theory can be found as

Jμ ≔
ffiffiffiffiffiffi
−g

p
ξ̄νðGνμÞð1Þ; ∂μJμ ¼ 0; ð1Þ

where ðGνμÞð1Þ is the linearized cosmological Einstein
tensor and the linearization of the field equations read
ðGνμÞð1Þ ¼ κτμν þOðh2; h3;…Þ≕ κTμν. So the conserved
charge is

QðξÞ ≔
Z
Σ̄
dn−1y

ffiffiffiffiffiffi
−g

p
ξ̄νðGν0Þð1Þ; ð2Þ

where Σ̄ is a spatial hypersurface. Note that as Tμν includes
all the localized matter and higher order gravitational
corrections, despite appearance, (2) captures all the non-
linear terms. See the recent review articles [4,5] for more
details. To proceed further one needs to write ξ̄νðGνμÞð1Þ to
be the divergence of a tensor. This requires writing ðGνμÞð1Þ
explicitly in terms of the metric perturbation hμν which
yields [2]

ξ̄νðGνμÞð1Þ ¼ ∇αðξ̄ν∇βKμανβ − Kμβνα∇βξ̄νÞ; ð3Þ

with the superpotential given as

Kμανβ ≔
1

2
ðḡανh̃μβ þ ḡμβh̃αν − ḡαβh̃μν − ḡμνh̃αβÞ; ð4Þ

and h̃μν ≔ hμν − 1
2
ḡμνh. The crux of the above construction

is that one must use the explicit form the linearized Einstein
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tensor in terms of the metric perturbation (or deviation from
the (A)dS background). This yields (3) which is invariant
under gauge transformations of the form δhμν ¼ ∇̄μζνþ
∇̄νζμ, but neither Kμανβ, nor the two-from current
(ξ̄ν∇βKμανβ − Kμβνα∇βξ̄ν) that appears in the right-hand
side of (3) are gauge invariant: under these transformations
a boundary terms appears [6]. So, even though the charge
QðξÞ is gauge invariant, the integrand defining the charge is
not. The question is if one can find a way to make all this
construction explicitly gauge invariant. The answer is not
obvious because not every gauge-invariant physical quan-
tity can be written explicitly gauge-invariant in local way.
To achieve our goal of finding a fully gauge-invariant

expression, here we shall provide another method of
expressing ξ̄νðGνμÞð1Þ in such a way that one does not
explicitly use the expression of ðGνμÞð1Þ, instead purely
geometric considerations will be used such that the charges
are expressed in terms of the linearized Riemann tensor.
The formula, whose derivation will be given below, reads as

Qðξ̄Þ ¼ k
Z
∂Σ̄

dn−2x
ffiffiffī
γ

p
ϵ̄μνðRνμ

βσÞð1ÞF̄ βσ; ð5Þ

with the constant coefficient

k ¼ ðn − 1Þðn − 2Þ
8ðn − 3ÞΛGΩn−2

ð6Þ

and ðRνμ
βσÞð1Þ is the linearized part of the Riemann tensor

about the AdS background. All the barred quantities refer
to the background spacetime M̄ whose boundary is ∂M̄.
The Killing vector is ξ̄σ and the antisymmetric tensor is
F̄ βσ ≔ ∇̄βξ̄σ . Σ̄ is a spatial hypersurface which is not equal
to ∂M̄, hence Σ̄ can have a boundary of its own which
is ∂Σ̄. Here

ϵ̄μν ≔
1

2
ðn̄μσ̄ν − n̄νσ̄μÞ; ð7Þ

where n̄μ is a normal one form on ∂M̄ and σ̄ν is the unit
normal one form on ∂Σ̄ and γ̄ is the induced metric on the
boundary.

II. DERIVATION OF THE NEW FORMULA

Let us now provide the derivation of (5): we start with the
second Bianchi identity

∇νRσβμρ þ∇σRβνμρ þ∇βRνσμρ ¼ 0; ð8Þ

multiplying with gνρ and making use of the definition of the
cosmological Einstein tensor Gν

β ≔ Rν
β −

1
2
Rδβν þ Λδβν, one

arrives at

∇νPν
μβσ ¼ 0; ð9Þ

where the P tensor reads

Pν
μβσ ≔ Rν

μβσ þ δνσGβμ − δνβGσμ þ Gν
σgβμ − Gν

βgσμ

þ
�
R
2
−
Λðnþ 1Þ
n − 1

�
ðδνσgβμ − δνβgσμÞ: ð10Þ

In the construction of this tensor we have used
∇μGμν ¼ 0 and ∇μgμν ¼ 0 and defined it in such a
way that its AdS value vanishes. For any smooth metric,
(9) is valid identicallywithout the use of the field equations.
We can also express the P tensor in terms of the Weyl
tensor as

Pνμβσ ¼ Cνμβσ −
2ðn − 3Þ
n − 2

ðGν½βgσ�μ þ Gμ½σgβ�νÞ

þ n − 3

n − 1

�
Λn
n − 2

−
R
2

�
ðgνβgμσ − gμβgνσÞ: ð11Þ

Let F βσ be a generic antisymmetric tensor. Then, con-
tracting (9) with F βσ yields

∇νðF βσPνμβσÞ − Pνμβσ∇νF βσ ¼ 0; ð12Þ

which is an exact equation. Let us now consider the metric
perturbation which defines asymptotically AdS spacetimes

gμν ¼ ḡμν þ hμν; ð13Þ

where the background metric is AdS and satisfies

R̄αβγδ ¼
2Λ

ðn − 1Þðn − 2Þ ðḡαγ ḡβδ − ḡαδḡβγÞ; ð14Þ

together with Ricci tensor R̄αβ ¼ 2Λ
n−2 ḡαβ and the scalar

curvature R̄ ¼ 2Λn
n−2. For the AdS background we have Ḡμν ¼

0 and P̄νμβσ ¼ 0 as already noted. Let us now consider the
following particular antisymmetric tensor

F αβ ≔
1

2
ð∇αξβ −∇βξαÞ: ð15Þ

When ξ is a background Killing vector one hasF αβ ¼ F̄ αβ.
The linear order expansion of (12) reads

∇̄νððPνμβσÞð1ÞF̄ βσÞ − ðPνμβσÞð1Þ∇̄νF̄ βσ ¼ 0: ð16Þ

We now need to calculate the first order linearization of the
P tensor which reads
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ðPνμβσÞð1Þ ¼ ðRνμβσÞ1 þ 2ðGμ½βÞð1Þḡσ�ν þ 2ðGν½σÞð1Þḡβ�μ
þ ðRÞð1Þḡμ½βḡσ�ν

þ 4Λ
ðn − 1Þðn − 2Þ ðh

μ½σ ḡβ�ν þ ḡμ½σhβ�νÞ: ð17Þ

After some manipulations and using the identity
∇̄μ∇̄νξ̄ρ ¼ R̄σ

μνρξ̄σ , one arrives at

ðPνμβσÞð1Þ∇̄νF̄ βσ ¼
4Λðn − 3Þ

ðn − 1Þðn − 2Þ ξ̄λðG
λμÞð1Þ; ð18Þ

then from (16) we obtain the main expression

ξ̄λðGλμÞð1Þ ¼ ðn − 1Þðn − 2Þ
4Λðn − 3Þ ∇̄νððPνμβσÞð1ÞF̄ βσÞ: ð19Þ

This proves our desired formula: without writing the
linearized Einstein tensor explicitly in terms of the metric
perturbation, we were able to express the conserved current
as a boundary term involving the linearization of the
Riemann and Einstein tensors as well as the Ricci scalar.
To arrive at the total charge expression, we use the Stokes’
theorem and the resulting integral must be evaluated at
spatial infinity. This simplifies the expression further:
ðGνμÞð1Þ and the linearized scalar curvature vanishes at
infinity. Moreover lowering the last two indices of the
ðPνμβσÞð1Þ tensor one arrives at the charge expression (5).

A. Application to Kerr-AdS black holes

As an application of our formula, let us consider the
Kerr-AdS black hole in four dimensions. One can take the
solution to be in the Kerr-Schild form which reads

ds2 ¼ ds̄2 þ 2Mr
ρ2

ðkμdxμÞ2; ð20Þ

where ρ2 ¼ r2 þ a2cos2θ and with the AdS seed metric
given as

ds̄2 ¼ −
ð1 − Λr2

3
ÞΔθdt2

ð1þ Λa2
3
Þ þ ρ2dr2

ð1 − Λr2
3
Þðr2 þ a2Þ

þ ρ2dθ2

Δθ
þ ðr2 þ a2Þsin2θdϕ2

ð1þ Λa2
3
Þ ; ð21Þ

where Δθ ¼ 1þ Λ
3
cos2θ. The null vector kμ is given by

kμdxμ ¼
Δθdt

ð1þ Λa2
3
Þ þ

ρ2dr

ð1 − Λr2
3
Þðr2 þ a2Þ −

asin2θdϕ

ð1þ Λa2
3
Þ :

Taking the Killing vector to be ξ̄ ¼ ð−1; 0; 0; 0Þ, and
G ¼ 1, the charge expression (5) becomes

E ¼ 3

16πΛ

Z
S2∞

dΩðRrt
βσÞð1Þ∇̄βξ̄σ; ð22Þ

with
ffiffiffī
γ

p ¼ r2þa2cos2θ
1þΛ

3
a2

. The integral is over a sphere at r → ∞
which yields the answer

E ¼ M

ð1þ Λa2
3
Þ2 : ð23Þ

Similarly for the Killing vector ξ̄ ¼ ð0; 0; 0; 1Þ one finds the
angular momentum of the black hole as

J ¼ aM

ð1þ Λa2
3
Þ2 : ð24Þ

These relations satisfy E ¼ J=a and they match the ones
computed in [7].

III. RELATION OF THE NEW FORMULA WITH
THE ABBOTT-DESER FORMULA

Let us derive the explicit connection between the AD
expression (3) and the one we have given here (19). Going
from the former to the latter is extremely difficult, one
needs judicious additions of terms that vanish, so we shall
start from our expression and expand it to find out the
relation. For this purpose, let us start from the linearized
form of the (2,2) background tensor

Pνμ
βσ ≔ Rνμ

βσ þ δνσðRμ
βÞð1Þ − δνβðRμ

σÞð1Þ þ δμβðRν
σÞð1Þ

− δμσðRν
βÞð1Þ −

1

2
ðRÞð1Þðδνσδμβ − δνβδ

μ
σÞ; ð25Þ

which, due to the symmetries, yields

ðPνμ
βσÞð1ÞF̄ βσ ¼ F̄ βσðRνμ

βσÞð1Þ þ 2F̄ σνðRμ
σÞð1Þ

− 2F̄ σμðRν
σÞð1Þ − F̄ μνðRÞð1Þ: ð26Þ

Let us compute the right-hand side of the last expression
term by term. The first term can be written as

F̄ βσðRνμ
βσÞð1Þ ¼

1

2
F̄ βσð−R̄ν

λβσhλμ þ R̄μ
λβσhλν

þḡλμðRν
λβσÞð1Þ − ḡλνðRμ

λβσÞð1ÞÞ: ð27Þ

Using the first order linearized Riemann tensor

ðRν
λβσÞð1Þ ¼ ∇̄βðΓν

λσÞð1Þ − ∇̄σðΓν
λβÞð1Þ; ð28Þ

one finds
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F̄ βσðRνμ
βσÞð1Þ ¼

2Λ
ðn − 1Þðn − 2Þ ðF̄

μσhνσ − F̄ νσhμσÞ

þ F̄ βσ∇̄βð∇̄μhνσ − ∇̄νhμσÞ: ð29Þ

We can rewrite this as follows:

F̄ βσðRνμ
βσÞð1Þ ¼

2Λ
ðn − 1Þðn − 2Þ ðh

ν
σ∇̄μξ̄σ − hμσ∇̄νξ̄σ

þ ðn − 1Þξ̄σ∇̄μhνσ − ðn − 1Þξ̄σ∇̄νhμσÞ
þ ∇̄βðF̄ βσð∇̄μhνσ − ∇̄νhμσÞÞ: ð30Þ

Now, we can compute the second term in (26) as

2F̄ σνðRμ
σÞð1Þ ¼ 2F̄ σνðḡλμðRλσÞð1Þ − hλμR̄λσÞÞ ð31Þ

where

ðRλσÞð1Þ ¼
1

2
ð∇̄ρ∇̄λh

ρ
σ þ ∇̄ρ∇̄σh

ρ
λ − ∇̄ρ∇̄ρhλσ − ∇̄λ∇̄σhÞ:

ð32Þ

Then we have

2F̄ σνðRμ
σÞð1Þ ¼ 2Λ

ðn−1Þðn−2Þðξ̄
σ∇̄νhμσ−h∇̄μξ̄ν− ξ̄σ∇̄μhνσ

þðn−2Þðhμσ∇̄νξ̄σþ ξ̄ν∇̄σhσμ− ξ̄ν∇̄μhÞÞ
þ∇̄ρðF̄ σνð∇̄μhρσþδρσ∇̄βhβμ−∇̄ρhμσ−δρσ∇̄μhÞÞ:

ð33Þ

Finally we can compute the last term in (26) as

F̄ μνðRÞð1Þ ¼ 2Λ
ðn − 1Þðn − 2Þ ð−ξ̄

μ∇̄σhσν þ ξ̄μ∇̄νh

þ ξ̄ν∇̄σhσμ − ξ̄ν∇̄μh − ðn − 1Þh∇̄μξ̄νÞ
∇̄ρðF̄ μνð∇̄σhρσ − ∇̄ρhÞÞ: ð34Þ

Collecting all the pieces together, we have the following
expression

ðPνμ
βσÞð1ÞF̄ βσ ¼ 4Λðn − 3Þ

ðn − 1Þðn − 2Þ ðh
½μ
σ ∇̄ν�ξ̄σ þ ξ̄σ∇̄½μhν�σ þ ξ̄½ν∇̄σhμ�σ þ ξ̄½μ∇̄ν�hþ 1

2
h∇̄μξ̄νÞ

þ ∇̄ρðF̄ σνð∇̄μhρσ þ δρσ∇̄βhβμ − ∇̄ρhμσ − δρσ∇̄μhÞ − 1

2
F̄ μνð∇̄σhρσ − ∇̄ρhÞ þ F̄ ρσ∇̄μhνσ − ðμ ↔ νÞÞ: ð35Þ

from (19), we can write

ξ̄λðGλμÞð1Þ ¼ ∇̄ν

�
h½μσ ∇̄ν�ξ̄σ þ ξ̄σ∇̄½μhν�σ þ ξ̄½ν∇̄σhμ�σ þ ξ̄½μ∇̄ν�hþ 1

2
h∇̄μξ̄ν

�

þ ðn − 1Þðn − 2Þ
4Λðn − 3Þ ∇̄ν∇̄ρ

�
−
1

2
∇̄μξ̄νð∇̄σhρσ − ∇̄ρhÞ þ ∇̄σξ̄νð∇̄μhρσ þ δρσ∇̄βhβμ

− ∇̄ρhμσ − δρσ∇̄μhÞ þ ∇̄ρξ̄σ∇̄μhνσ − ðμ ↔ νÞ
�
: ð36Þ

The first two lines yield the AD expression as given in [3]
while the remaining part is of the form ∇̄ν∇̄ρQρμν½h�.
Integrating the above expression on a spatial hypersurface,
after making use of the Stokes’ theorem, the first two lines
give the AD charge, while the other part having two
derivatives remain a total divergence on the boundary of
the hypersurface, vanishes since the boundary of the
boundary is nil. Note that this equivalence does not work
in 3 spacetime dimensions and for the asymptotically flat
spacetimes. It is important to recognize the following:
under gauge transformations, the left-hand side of (36) is
gauge invariant and so is the right-hand side. But, it is easy
to see that the first two lines are gauge-invariant only up to a
boundary term. Full gauge invariance is recovered with the

additional parts. The details of this discussion were given
in [6].

IV. CONCLUSIONS

We have given a conserved charge expression in
Einstein’s theory for asymptotically (A)dS spacetimes
which is directly written in terms of the linearized
Riemann tensor and an antisymmetric tensor that appears
as the potential of the Killing vector on the boundary of the
spatial hypersurface. The expression is explicitly gauge-
invariant as the up-up-down-down linearized Riemann
tensor is gauge invariant under small variations
δhμν ¼ ∇̄μζν þ ∇̄νζμ. Our construction started from the
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second Bianchi Identity on the Riemann tensor and as such,
the final expression of conserved charges is valid for n > 3
and not valid for the case of three dimensions. A naive
extension of this construction to generic gravity theories as
discussed in [3] is not that obvious and was carried out [6]

after this work appeared. Once a higher order theory’s field
equations are given one can work out a similar computation
for these theories and the coefficient k in (6) receives
corrections from the higher curvature terms. It would be
interesting to relate our construction to the one given in [8].
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